Abstract:
An electrochromic device includes a first electrode, a second electrode disposed opposite the first electrode, a porous electrochromic layer disposed on the first electrode or the second electrode, and an electrolyte disposed between the first electrode and the second electrode. The porous electrochromic layer includes different sized nanoparticle clusters, and each nanoparticle cluster includes a plurality of nanoparticles and an electrochromic material.
Abstract:
An electrochromic material including a metal-organic framework including a metal, and an organic compound including a functional group, wherein the organic compound forms a coordination complex with the metal.
Abstract:
Disclosed is an electrochromic material including a compound represented by Chemical Formula 1 and an electrochromic device including the electrochromic material. In Chemical Formula 1, R1, R2, L1, and L2 are as defined in the detailed description.
Abstract:
An electrochromic compound represented by the following Chemical Formula 1: Also disclosed is an electrochromic device including the electrochromic compound.
Abstract:
An electrochromic device includes a first electrode, a second electrode opposing the first electrode, a first electrochromic layer, a second electrochromic layer, and an electrolyte contacted with the first and second electrochromic layers. The first and second electrochromic layers are positioned between the first electrode and the second electrode and includes different electrochromic materials. The first and second electrochromic layers are simultaneously n-type or simultaneously p-type. The electrochromic device may display transparency and various colors in a single pixel without using plural sub-pixels.