Abstract:
Video sources and inertial sensors are attached to a weapon and to goggles. A computer receives video images from the weapon- and goggles-mounted sources and inertial data from the sensors. The computer calculates a location for an image from the weapon-mounted source within an image from the goggles-mounted source using the inertial sensor data. The sensor-based location is checked (and possibly adjusted) based on a comparison of the images. A database contains information about real-world objects in a field of view of the goggles-mounted source, and is used to generate icons or other graphics concerning such objects.
Abstract:
Video sources and inertial sensors are attached to a weapon and to goggles. A computer receives video images from the weapon- and goggles-mounted sources and inertial data from the sensors. The computer calculates a location for an image from the weapon-mounted source within an image from the goggles-mounted source using the inertial sensor data. The sensor-based location is checked (and possibly adjusted) based on a comparison of the images. A database contains information about real-world objects in a field of view of the goggles-mounted source, and is used to generate icons or other graphics concerning such objects.
Abstract:
Search points in a search space may be projected onto images from cameras imaging different parts of the search space. Subimages, corresponding to the projected search points, may be selected and processed to determine if a target object has been detected. Based on subimages in which target objects are detected, as well as orientation data from cameras capturing images from which the subimages were selected, positions of the target objects in the search space may be determined.
Abstract:
Video sources and inertial sensors are attached to a weapon and to goggles. A computer receives video images from the weapon- and goggles-mounted sources and inertial data from the sensors. The computer calculates a location for an image from the weapon-mounted source within an image from the goggles-mounted source using the inertial sensor data. The sensor-based location is checked (and possibly adjusted) based on a comparison of the images. A database contains information about real-world objects in a field of view of the goggles-mounted source, and is used to generate icons or other graphics concerning such objects.
Abstract:
Search points in a search space may be projected onto images from cameras imaging different parts of the search space. Subimages, corresponding to the projected search points, may be selected and processed to determine if a target object has been detected. Based on subimages in which target objects are detected, as well as orientation data from cameras capturing images from which the subimages were selected, positions of the target objects in the search space may be determined.
Abstract:
Search points in a search space may be projected onto images from cameras imaging different parts of the search space. Subimages, corresponding to the projected search points, may be selected and processed to determine if a target object has been detected. Based on subimages in which target objects are detected, as well as orientation data from cameras capturing images from which the subimages were selected, positions of the target objects in the search space may be determined.
Abstract:
Search points in a search space may be projected onto images from cameras imaging different parts of the search space. Subimages, corresponding to the projected search points, may be selected and processed to determine if a target object has been detected. Based on subimages in which target objects are detected, as well as orientation data from cameras capturing images from which the subimages were selected, positions of the target objects in the search space may be determined.
Abstract:
Video sources and inertial sensors are attached to a weapon and to goggles. A computer receives video images from the weapon- and goggles-mounted sources and inertial data from the sensors. The computer calculates a location for an image from the weapon-mounted source within an image from the goggles-mounted source using the inertial sensor data. The sensor-based location is checked (and possibly adjusted) based on a comparison of the images. A database contains information about real-world objects in a field of view of the goggles-mounted source, and is used to generate icons or other graphics concerning such objects.
Abstract:
Video sources and inertial sensors are attached to a weapon and to goggles. A computer receives video images from the weapon- and goggles-mounted sources and inertial data from the sensors. The computer calculates a location for an image from the weapon-mounted source within an image from the goggles-mounted source using the inertial sensor data. The sensor-based location is checked (and possibly adjusted) based on a comparison of the images. A database contains information about real-world objects in a field of view of the goggles-mounted source, and is used to generate icons or other graphics concerning such objects.
Abstract:
Video sources and inertial sensors are attached to a weapon and to goggles. A computer receives video images from the weapon- and goggles-mounted sources and inertial data from the sensors. The computer calculates a location for an image from the weapon-mounted source within an image from the goggles-mounted source using the inertial sensor data. The sensor-based location is checked (and possibly adjusted) based on a comparison of the images. A database contains information about real-world objects in a field of view of the goggles-mounted source, and is used to generate icons or other graphics concerning such objects.