Abstract:
Provided are a depth camera and methods of measuring a depth image by using the depth camera. The depth camera is a time-of-flight (TOF) depth camera including: an illumination device that illuminates a patterned light to an object; a filter unit that reduces noise light included in light reflected by the object; and an image sensor that provides a depth image of the object by receiving light that enters through the filter unit. The illumination device includes: a light source; and a patterned light generator that changes the light emitted from the light source into the patterned light. The filter unit includes a band pass filter and an optical modulator. The patterned light generator may be a diffractive optical element or a refractive optical element.
Abstract:
A large-area transmissive type optical image modulator, a method of manufacturing the same, and an optical apparatus including the transmissive type optical image modulator are provided. The large-area transmissive type optical image modulator includes: a base substrate; a first expitaxial layer formed on the base substrate; a second expitaxial layer formed on the first expitaxial layer; a first electrode formed on the first expitaxial layer and spaced apart from the second expitaxial layer; a second electrode formed on the second expitaxial layer; and a transparent substrate covering the second expitaxial layer and the second electrode, wherein the base substrate includes a through hole corresponding to a light emitting area, and the first expitaxial layer may include an n-type or p-type doping material.
Abstract:
Provided are a wavelength separation device and a 3-dimensional (3D) image acquisition apparatus including the same. The wavelength separation device includes a first prism having an inclined surface and a second prism bonded to a first region of the inclined surface of the first prism. A wavelength separation coating may be disposed at a junction between the first portion of the inclined surface of the first prism and the second prism, and a second portion of the inclined surface of the first prism, different from the first portion, is a total reflection surface that totally internally reflects light.
Abstract:
An optical device is provided including an active layer having two outer barriers and a coupled quantum well between the two outer barriers. The coupled quantum well includes a first quantum well layer, a second quantum well layer, a third quantum well layer, a first coupling barrier between the first quantum well layer and the second quantum well layer, and a second coupling barrier between the second quantum well layer and the third quantum well layer. A thickness of the first quantum well layer and a thickness of the third quantum well layer are each different from a thickness of the second quantum well layer. Also, an energy level of the first quantum well layer and an energy level of the third quantum well layer are each different from an energy level of the second quantum well layer.
Abstract:
Provided are a three-dimensional (3D) image acquisition apparatus, and a method of generating a depth image in the 3D image acquisition apparatus. The method may include sequentially projecting a light transmission signal, which is generated from a light source, to a subject, modulating reflected light, which is reflected by the subject, using a light modulation signal, calculating a phase delay using a combination of a first plurality of images of two groups, from among a second plurality of images of all groups obtained by capturing the modulated reflected light, and generating a depth image based on the phase delay.
Abstract:
An imaging optical system includes an objective lens configured to focus light having a first wavelength band and light having a second wavelength band, an optical shutter module configured to reflect the light having the first wavelength band, which is focused by the objective lens, without modulating the light having the first wavelength band and to modulate the light having the second wavelength band, which is focused by the objective lens, and reflect the modulated light having the second wavelength band, and an image sensor configured to respectively sense the light having the first wavelength band and the modulated light having the second wavelength band, which are reflected by the optical shutter module, and to output a first image signal with respect to the light having the first wavelength band and a second image signal with respect to the modulated light having the second wavelength band.
Abstract:
An imaging optical system includes an objective lens configured to focus light having a first wavelength band and light having a second wavelength band, an optical shutter module configured to reflect the light having the first wavelength band, which is focused by the objective lens, without modulating the light having the first wavelength band and to modulate the light having the second wavelength band, which is focused by the objective lens, and reflect the modulated light having the second wavelength band, and an image sensor configured to respectively sense the light having the first wavelength band and the modulated light having the second wavelength band, which are reflected by the optical shutter module, and to output a first image signal with respect to the light having the first wavelength band and a second image signal with respect to the modulated light having the second wavelength band.
Abstract:
Provided are examples of light modulators and optical apparatuses that may include the light modulators. A light modulator may include a plasmonic nano-antenna and an element for changing plasmon resonance characteristics of the plasmonic nano-antenna. The plasmon resonance characteristics of the plasmonic nano-antenna may be changed due to a change in refractive index of the element, and thus light may be modulated.
Abstract:
A transmissive image modulator for allowing image modulation over a wide bandwidth with multiple Fabry-Perot resonant modes and multiple absorption modes is provided. The transmissive image modulator includes a lower reflection layer; an active layer disposed on the lower reflection layer, including multiple quantum well layers and multiple barrier layers; an upper reflection layer disposed on the active layer; and at least one micro-cavity layer disposed in at least one of the lower and upper reflection layer. The active layer and the at least one micro-cavity layer have thicknesses of a multiple of λ/2, where λ is a resonant wavelength.
Abstract:
An optical modulator and a 3D image acquisition apparatus including an optical modulator are provided. The optical modulator is disposed in a multiple quantum well including a plurality of quantum wells and a plurality of quantum barriers, and includes at least one carrier block disposed in the multiple quantum well restricting the carrier movement between the multiple quantum wells.