Abstract:
A magnetic resonance imaging (MRI) method includes defining a plurality of sub-volumes so that each of the sub-volumes includes a plurality of sequential slices of a plurality of slices that make up a volume of a subject, wherein the sub-volumes are divided into a plurality of groups so that any neighboring sub-volumes belong to different groups; applying radio-frequency (RF) pulses including a plurality of frequency components and a selection gradient to the subject to simultaneously excite a plurality of sub-volumes in each of the groups; performing three-dimensional (3D) encoding on each of the excited sub-volumes so that only some slices of the plurality of slices in each of the excited sub-volumes are encoded in a slice direction; acquiring magnetic resonance signals from the encoded sub-volumes; and reconstructing the acquired magnetic resonance signals into image data corresponding to each of the plurality of slices in each of the encoded sub-volumes.
Abstract:
A receiving coil for a magnetic resonance imaging (MRI) apparatus has a cylindrical form including ring-type support members or a cylinder-type support member having open ends, and at least one coil element connected to the support member(s). The receiving coil is configured to receive magnetic resonance signals.
Abstract:
A magnetic resonance imaging (MRI) method includes: applying radio-frequency (RF) pulses comprising a plurality of frequency components and a selection gradient to a subject to simultaneously excite a plurality of sub-volumes in each of a plurality of groups, wherein a plurality of sub-volumes making up a volume of the subject are divided into the plurality of groups so that any neighboring sub-volumes belong to different groups; performing three-dimensional (3D) encoding on each of the excited sub-volumes using a plurality of encoding methods; acquiring magnetic resonance signals from the encoded sub-volumes; and reconstructing the acquired magnetic resonance signals into image data corresponding to each of the encoded sub-volumes.
Abstract:
A magnetic resonance imaging (MRI) method includes: applying radio-frequency (RF) pulses comprising a plurality of frequency components and a selection gradient to a subject to simultaneously excite a plurality of sub-volumes in each of a plurality of groups, wherein a plurality of sub-volumes making up a volume of the subject are divided into the plurality of groups so that any neighboring sub-volumes belong to different groups; performing three-dimensional (3D) encoding on each of the excited sub-volumes using a plurality of encoding methods; acquiring magnetic resonance signals from the encoded sub-volumes; and reconstructing the acquired magnetic resonance signals into image data corresponding to each of the encoded sub-volumes.
Abstract:
A magnetic resonance imaging (MRI) method includes defining a plurality of sub-volumes so that each of the sub-volumes includes a plurality of sequential slices of a plurality of slices that make up a volume of a subject, wherein the sub-volumes are divided into a plurality of groups so that any neighboring sub-volumes belong to different groups; applying radio-frequency (RF) pulses including a plurality of frequency components and a selection gradient to the subject to simultaneously excite a plurality of sub-volumes in each of the groups; performing three-dimensional (3D) encoding on each of the excited sub-volumes so that only some slices of the plurality of slices in each of the excited sub-volumes are encoded in a slice direction; acquiring magnetic resonance signals from the encoded sub-volumes; and reconstructing the acquired magnetic resonance signals into image data corresponding to each of the plurality of slices in each of the encoded sub-volumes.
Abstract:
A method of magnetic resonance imaging (MRI) includes applying radio frequency (RF) pulses including a plurality of frequency components and a selection gradient to a target to simultaneously excite a plurality of sub-volumes included in each of a plurality of groups, wherein neighboring sub-volumes of all sub-volumes constituting a volume of the target belong to different groups; acquiring magnetic resonance signals from the plurality of sub-volumes by performing 3D encoding on each of the excited sub-volumes; and reconstructing the acquired magnetic resonance signals into image data corresponding to each of the plurality of sub-volumes.
Abstract:
a radio frequency (RF) coil device includes a plurality of RF coil elements configured to generate an RF magnetic field, and a support member configured to support the plurality of RF coil elements so that at least one of the plurality of RF coil elements is movable.
Abstract:
A method and apparatus for generating a magnetic resonance image including applying to a target first radio frequency (RF) pulses having phases and different frequencies to excite a plurality of sub-volumes constituting a volume of the target, and acquiring first magnetic resonance signals from the plurality of sub-volumes, and applying to the target second RF pulses having the same frequencies as the frequencies of the first RF pulses and phases at least one of which is different from the phases of the first RF pulses, and acquiring second magnetic resonance signals from the plurality of sub-volumes. Also, data may be generated based on the first and second magnetic resonance signals.
Abstract:
a radio frequency (RF) coil device includes a plurality of RF coil elements configured to generate an RF magnetic field, and a support member configured to support the plurality of RF coil elements so that at least one of the plurality of RF coil elements is movable.
Abstract:
A method and apparatus for generating a magnetic resonance image including applying to a target first radio frequency (RF) pulses having phases and different frequencies to excite a plurality of sub-volumes constituting a volume of the target, and acquiring first magnetic resonance signals from the plurality of sub-volumes, and applying to the target second RF pulses having the same frequencies as the frequencies of the first RF pulses and phases at least one of which is different from the phases of the first RF pulses, and acquiring second magnetic resonance signals from the plurality of sub-volumes. Also, data may be generated based on the first and second magnetic resonance signals.