Abstract:
An embodiment disclosed herein relates to an unmanned aerial vehicle for inventory management and a method of operating the same. The unmanned aerial vehicle may include: at least one sensor configured to acquire at least one of inertia information or position information of the unmanned aerial vehicle; a communication unit configured to communicate with a control system; and a processor operably connected to the at least one sensor and the communication unit. The processor may be configured to: receive an inventory survey request from the control system; generate a route information of the unmanned aerial vehicle based on the received request and previously stored spatial information; and perform an inventory survey based on the generated route information.
Abstract:
A robot control method of controlling a robot that has a flexible module including ‘n’ first nodes participating in pan motion and ‘n’ second nodes participating in tilt motion may include: measuring a translational motion distance, a pan motion angle, and a tilt motion angle of the flexible module; calculating state vectors of the ‘n’ first nodes and the ‘n’ second nodes using the measured translational motion distance; calculating operating angle distribution rates of the ‘n’ first nodes and operating angle distribution rates of the ‘n’ second nodes using the calculated state vectors of the ‘n’ first nodes and the calculated state vectors of the ‘n’ second nodes; and/or calculating operating angles of the ‘n’ first nodes and operating angles of the ‘n’ second nodes using the calculated operating angle distribution rates and the measured pan motion angle and tilt motion angle.
Abstract:
A marker includes a basal surface, and a plurality of reference lines provided at the basal surface in a longitudinal direction of the basal surface. The reference lines may have different gradients. The marker may be attached to an instrument and a camera may capture an image of the marker. Pose information of the instrument may be estimated based on the captured image.
Abstract:
A robot may include: a multi-tool module having redundancy, the multi-tool module including a guide tube and a plurality of tools configured to operate while interacting with the guide tube and extended from the guide tube; and/or a controller configured to generate a control signal regarding motion of the multi-tool module in a joint space based on motion instruction information regarding distal ends of the plurality of tools in a task space. The redundancy may reflect that a number of degrees of freedom of the multi-tool module in the joint space is greater than a number of degrees of freedom of the task space. The control signal may be generated using the redundancy.
Abstract:
A method of tracking a moving object includes measuring displacement of an object to be tracked, obtaining a particle of the object to be tracked using the measured displacement, and tracking the object using pose information of the object in an image thereof and the obtained particle. A control apparatus includes an imaging module to perform imaging of an object and generates an image, and a tracking unit to acquire displacement and pose information of the object using the generated image of the object, to set a particle of the object using the acquired displacement of the object, and to track the object using the pose information of the object and the particle.
Abstract:
A multi-sensor based unmanned aerial vehicle and a method for controlling the same. The unmanned aerial vehicle may include: a sensor part configured to acquire inertia information or position information of the unmanned aerial vehicle; and a controller. The controller is configured to estimate the position of the unmanned aerial vehicle by applying the information acquired by the sensor part to an extended Kalman filter and control movement of the unmanned aerial vehicle, based on the estimated position of the unmanned aerial vehicle. The sensor part includes: an inertia sensor configured to acquire the inertia information of the unmanned aerial vehicle; a tag recognition sensor configured to recognize a tag attached to a rack and acquire absolute position information of the unmanned aerial vehicle; and an image sensor attached to the unmanned aerial vehicle so as to acquire an image of the movement environment of the unmanned aerial vehicle.