Abstract:
Methods of calibrating a linear-logarithmic image sensor pixel include performing a reset of the pixel in advance of establishing a leakage current between a photodiode and a floating diffusion region of the pixel. A first voltage of the floating diffusion region is then read through a source follower and selection transistor, after the leakage is terminated. A step is then performed to transfer charge between the photodiode and the floating diffusion region of the pixel so that a voltage of a cathode of the photodiode is increased. Thereafter, a second voltage of the floating diffusion region is read. The first and second read voltages are then used to perform a calibration operation. These steps may be repeated to establish another leakage current of different duration/magnitude and yield third and fourth read voltages, which support further calibration.
Abstract:
Methods of calibrating a linear-logarithmic image sensor pixel include performing a reset of the pixel in advance of establishing a leakage current between a photodiode and a floating diffusion region of the pixel. A first voltage of the floating diffusion region is then read through a source follower and selection transistor, after the leakage is terminated. A step is then performed to transfer charge between the photodiode and the floating diffusion region of the pixel so that a voltage of a cathode of the photodiode is increased. Thereafter, a second voltage of the floating diffusion region is read. The first and second read voltages are then used to perform a calibration operation. These steps may be repeated to establish another leakage current of different duration/magnitude and yield third and fourth read voltages, which support further calibration.
Abstract:
Methods of performing two point calibration of a linear-logarithmic image sensor pixel include measuring voltages of a floating diffusion region of the pixel after establishing a plurality of unequal sub-threshold currents through a transfer transistor of the pixel. These sub-threshold currents operate to sequentially increase a voltage of the floating diffusion region to respective voltage levels that enable knee-point (KNPT) voltage and logarithmic sensitivity (LOGS) determination. The methods also include depleting a photodiode within the pixel by driving a cathode of the photodiode with a pull-up current in advance of establishing the sub-threshold currents. The method is photocurrent-independent.
Abstract:
Methods of performing two point calibration of a linear-logarithmic image sensor pixel include measuring voltages of a floating diffusion region of the pixel after establishing a plurality of unequal sub-threshold currents through a transfer transistor of the pixel. These sub-threshold currents operate to sequentially increase a voltage of the floating diffusion region to respective voltage levels that enable knee-point (KNPT) voltage and logarithmic sensitivity (LOGS) determination. The methods also include depleting a photodiode within the pixel by driving a cathode of the photodiode with a pull-up current in advance of establishing the sub-threshold currents. The method is photocurrent-independent.