Abstract:
Disclosed are an optical layer and a display device including the same. The optical layer includes optical components slanted a predetermined angle θ with respect to a pixel included in a display panel, and disposed at an interval of a predetermined distance l, and the predetermined angle θ and the predetermined distance l satisfy l=2g×tan(VAL/2) and a=l/(2g×tan(VAP/2)).
Abstract:
A method of processing a stereoscopic video includes determining whether a current frame of a stereoscopic video is a video segment boundary frame; determining whether an image error is included in the current frame when the current frame is the video segment boundary frame; and processing the current frame by removing, from the current frame, a post inserted object (PIO) included in the current frame when the image error is included in the current frame.
Abstract:
Provided is an apparatus and method for determining an interpupillary distance (IPD), the method and apparatus may determine the IPD of a user by analyzing an image of the user gazing at a display to which a predetermined pattern is output, wherein the image may be obtained by the apparatus for determining the IPD or may be received from an external terminal.
Abstract:
A three-dimensional (3D) display apparatus and method are provided. The 3D display apparatus may include a display screen configured to display each of a plurality of sub-images included in a single frame of a 3D image using a time-division multiplexing (TDM), a polarizer configured to polarize each of the displayed sub-images by changing a polarization direction using the TDM, in synchronization with the display screen, and microlens arrays arranged in a plurality of layers and configured to sequentially refract the polarized sub-images, respectively.
Abstract:
An image processing apparatus includes a calculator configured to calculate a respective position offset for each of a plurality of candidate areas in a second frame based on a position of a basis image in a first frame and a determiner configured to determine a final selected area that includes a target in the second frame based on a respective weight allocated to each of the plurality of candidate areas and the calculated respective position offset.
Abstract:
A method for reducing a moire fringe includes calculating a moire fringe width for each of different angles between a microlens array and pixels of a display screen. The method includes determining, to be a final inclination angle between the microlens array and the pixels of the display screen, one of the different inclination angles that corresponds to a minimum width among the calculated moire fringe widths.
Abstract:
A method of determining eye position information includes identifying an eye area in a facial image; verifying a two-dimensional (2D) feature in the eye area; and performing a determination operation including, determining a three-dimensional (3D) target model based on the 2D feature; and determining 3D position information based on the 3D target model.