Abstract:
A method of forming an organic material pattern film, the method including: forming partition walls on a first region of a first layer, the partition walls including a photosensitive compound including a resorcinarene, the resorcinarene including a perfluorocarbon group; forming a second layer including an organic material on a second region of the first layer, the second region being defined by the partition walls; removing the partition walls.
Abstract:
Provided is a method of manufacturing a light-emitting display device. The method of manufacturing a light-emitting display device may comprise: forming a first electrode on a substrate, the substrate having a plurality of first pixel areas and a plurality of second pixel areas, the first electrode being formed in each of the first and second pixel areas such that corresponding first and second pixels are formed; forming a pixel defining layer on the substrate, the pixel defining layer having an opening exposing the first electrode of each of the first and second pixels; forming a first photoresist pattern on the pixel defining layer, the first photoresist pattern having a first pattern opening exposing the first electrode of each of the first pixels; forming a light-emitting layer on the first electrode exposed through the first pattern opening; and removing the first photoresist pattern.
Abstract:
A method of manufacturing a substrate of an organic light-emitting display device, the method including: forming, on a first surface of a transparent substrate, a photothermal conversion layer configured to covert incident light into thermal energy; forming partition walls on the first surface in a first region of the photothermal conversion layer, the partition walls including a photosensitive compound including a resorcinarene, the resorcinarene including a perfluorocarbon group; forming an organic material layer on the first surface in a second region of the photothermal conversion layer, the second region being defined by the partition walls; removing the partition walls; placing a target substrate over the organic material layer; and applying light to a second surface of the transparent substrate, the second surface being opposite the first surface of the transparent substrate.
Abstract:
An optical mask includes a light-to-heat conversion layer with an improved temperature profile. The optical masks may comprise a light-transmitting base substrate; a first reflective pattern layer which is formed on the light-transmitting base substrate comprising a first opening portion transmitting light emitted from under the light-transmitting base substrate and a first reflective portion reflecting the light; a second reflective pattern layer which is formed over the first opening portion comprising a second opening portion overlapping a first area of the first opening portion and a second reflective portion overlapping a second area of the first opening portion; and a light-to-heat conversion pattern layer which is formed on the light-transmitting base substrate, being disposed in the first area of the first opening portion, absorbing at least a part of the light, and converting the light absorbed into heat.
Abstract:
A method of forming an organic material pattern film, the method including: forming partition walls on a first region of a first layer, the partition walls including a fluorine containing material; forming a second layer including an organic material on a second region of the first layer, the second region being defined by the partition walls; and removing the partition walls.
Abstract:
A method of forming an organic material pattern film, the method including: forming partition walls on a first region of a first layer, the partition walls including a photosensitive compound including a resorcinarene, the resorcinarene including a perfluorocarbon group; forming a second layer including an organic material on a second region of the first layer, the second region being defined by the partition walls; removing the partition walls.
Abstract:
A method of manufacturing a substrate of an organic light-emitting display device, the method including: forming, on a first surface of a transparent substrate, a photothermal conversion layer configured to covert incident light into thermal energy; forming partition walls on the first surface in a first region of the photothermal conversion layer, the partition walls including a photosensitive compound including a resorcinarene, the resorcinarene including a perfluorocarbon group; forming an organic material layer on the first surface in a second region of the photothermal conversion layer, the second region being defined by the partition walls; removing the partition walls; placing a target substrate over the organic material layer; and applying light to a second surface of the transparent substrate, the second surface being opposite the first surface of the transparent substrate.
Abstract:
An optical patterning mask, including a base substrate, a reflective layer disposed on the base substrate, the reflective layer including a first opening, a shadow pattern disposed on the base substrate and in the first opening, a thermal insulation layer disposed on the base substrate and covering the reflective layer and the shadow pattern, an absorption layer disposed on the thermal insulation layer, a bank layer disposed on the absorption layer, the bank layer including a second opening overlapping the first opening, a thermal conduction prevention pattern disposed on the absorption layer and overlapping the shadow pattern, and a transfer layer disposed on the absorption layer, the bank layer, and the thermal conduction prevention pattern.