Abstract:
A display apparatus includes a display panel including a plurality of data lines arranged in a first direction, where the data line extends substantially in a second direction, and a plurality of pixels electrically connected to the data lines, and a data driver configured to output a first data voltage and a second data voltage to the data lines and configured to control the number of the data lines which receives the first data voltage and the number of the data lines which receive the second data voltage, where the first data voltage has a positive polarity during a first frame and a negative polarity during a second frame, and the second data voltage has the negative polarity during the first frame and the positive polarity during the second frame.
Abstract:
A circuit includes a reference signal generating part configured to generate a plurality of reference signals having levels different from each other, a comparing part configured to compare a ripple signal with the reference signals to determine a level of the ripple signal, a compensating signal generating part configured to generate a compensation ripple signal corresponding to the level of the ripple signal, where the compensation ripple signal has a phase opposite to the ripple signal, and a push-pull circuit configured to stabilize the compensation ripple signal.
Abstract:
A method of driving a display panel includes: selectively providing a resistance using resistor parts in response to address signals, where the resistor parts have resistances, respectively; and outputting common voltages to the display panel based on the selectively provided resistance.
Abstract:
A method of driving a display panel includes: selectively providing a resistance using resistor parts in response to address signals, where the resistor parts have resistances, respectively; and outputting common voltages to the display panel based on the selectively provided resistance.
Abstract:
A method of driving a display panel includes steps of generating a plurality of load signals, of which at least one load signal has a different timing from the rest of the load signals, generating data voltages synchronized to low periods of the load signals and outputting the data voltages to data lines. Accordingly, the data voltages synchronized to each of the load signals can be outputted to each of the data lines. A color coordinate problem occurring when applying a RGBW type may be solved by setting a charging time of a white sub-pixel different from the rest of the sub-pixels. Thus, display quality of a display apparatus including the display panel may be improved.
Abstract:
A method of driving a display panel includes steps of generating a plurality of load signals, of which at least one load signal has a different timing from the rest of the load signals, generating data voltages synchronized to low periods of the load signals and outputting the data voltages to data lines. Accordingly, the data voltages synchronized to each of the load signals can be outputted to each of the data lines. A color coordinate problem occurring when applying a RGBW type may be solved by setting a charging time of a white sub-pixel different from the rest of the sub-pixels. Thus, display quality of a display apparatus including the display panel may be improved.