Abstract:
A image sticking compensating device according to example embodiments includes a degradation calculator configured to calculate a degradation weight based on input image data, and to calculate degradation data of a frame, an accumulator configured to accumulate the degradation data, and to generate age data using the accumulated degradation data, and a compensator configured to determine a grayscale compensation value corresponding to the age data and an input grayscale of the input image data, and to output age compensation data by applying the grayscale compensation value to the input image data.
Abstract:
An organic light emitting diode display includes a plurality of pixels configured to store a first data signal received through a corresponding data line during a scan period and to emit light according to a second data signal during a light emitting period of a frame, wherein the first data signal corresponds to the frame and the second data signal corresponds to a previous frame, and the scan period overlaps the light emitting period.
Abstract:
An organic light emitting diode display includes a plurality of pixels configured to store a first data signal received through a corresponding data line during a scan period and to emit light according to a second data signal during a light emitting period of a frame, wherein the first data signal corresponds to the frame and the second data signal corresponds to a previous frame, and the scan period overlaps the light emitting period.
Abstract:
A pixel, a display device using the pixel and a method of driving the display device are provided. The pixel may include an organic light emitting diode, a driving circuit for generating and transmitting driving current depending on data signals to the organic light emitting diode, and at least one switch connected between a power wire for applying a first voltage to the organic light emitting diode and a data line for transmitting the data signals. The at least one switch may include a compensating circuit for electronically connecting the power wire to the data line for a predetermined period to transmit the first voltage through the data line.
Abstract:
A display device comprising a plurality of pixels is disclosed. In one aspect, each pixel of the display device comprises a first capacitor connected between a data line and a first node, a reference voltage transistor configured to apply a reference voltage on the first node, a driving transistor having a gate connected to a second node and configured to control a drive current flowing from a first power supply voltage to an organic light emitting diode in response to a voltage of the second node applied to the gate of the driving transistor, a light emitting transistor configured to apply the first power supply voltage to an electrode of the driving transistor in response to a light emission signal applied to a gate of the light emitting transistor, a second capacitor connected between the second node and an anode of the organic light emitting diode, and a relay transistor configured to electrically connect the first node and the second node in response to a write signal applied to a gate of the relay transistor.
Abstract:
An organic light emitting diode (OLED) display device is disclosed. In one aspect, the display device includes a plurality of pixels. The plurality of pixels respectively include: 1) a first capacitor connected between a data line and a first node and 2) a switching transistor including a gate electrode connected to a scan line and first and second electrodes respectively connected to the first node and a second node. The display device also includes a driving transistor including a first electrode connected to a first power source voltage and a second electrode connected to an anode of an organic light emitting diode (OLED). The device further includes a compensation transistor including a first electrode connected to the first node and a second electrode connected to the second electrode of the driving transistor.
Abstract:
A method for driving an organic light emitting display device includes: storing, during a period of at least one normal frame, a voltage corresponding to a data signal in a pixel; and driving, during a period of k (k is a natural number of one or more) continuous frames arranged continuously after the period of the normal frame, the pixel in accordance with the data signal stored during the period of the at least one normal frame
Abstract:
A display device that includes a pixel including an organic light emitting diode (OLED), a driving transistor connected to the driving voltage and supplying a driving current to the OLED, a compensation capacitor connected to the gate electrode of the driving transistor, and a first storage capacitor and a second storage capacitor electrically connected to or blocked from the compensation capacitor, and a driving method thereof.
Abstract:
An organic light emitting diode display includes a plurality of pixels configured to store a first data signal received through a corresponding data line during a scan period and to emit light according to a second data signal during a light emitting period of a frame, wherein the first data signal corresponds to the frame and the second data signal corresponds to a previous frame, and the scan period overlaps the light emitting period.
Abstract:
An organic light emitting diode (OLED) display device is disclosed. In one aspect, the device includes a plurality of pixels. Each of the pixels includes 1) a driving transistor controlling a driving current supplied to an OLED, 2) a first capacitor connected to a first electrode of the driving transistor and 3) a switching transistor connecting the first capacitor and the data line. Each pixel further includes a first light emission transistor transmitting a first power source voltage to the first electrode of the driving transistor and a second capacitor connected between the gate electrode of the driving transistor and the first power source voltage. When the first power source voltage is applied to the first electrode of the driving transistor, the corresponding scan signal of a gate-on voltage is supplied and thus the corresponding data voltage is stored in the first capacitor.