Abstract:
An operating method of a touch sensor includes sensing first touch intensities in a first touch-sensing area by using first touch cells, sensing second touch intensities in a second touch-sensing area that is adjacent to the first touch-sensing area by using second touch cells each having an area that is smaller than that of each of the first touch cells, grouping some second touch cells among the second touch cells as a touch-sensing group having a same area as one of the first touch cells, calculating a representative touch intensity of the touch-sensing group by using the second touch intensities sensed by second touch cells in the touch-sensing group, and detecting a touch position by using the first touch intensities and the representative touch intensity.
Abstract:
A display device includes a display panel configured to receive a first-frame image signal for displaying a first-frame image in a first frame. The display panel is further configured to receive a second-frame image signal for displaying a second-frame image in a second frame that immediately follows the first frame such that the display panel appears to display a transition region associated with a boudary between a portion of the first-frame image and a portion of the second-frame image and moving in a moving direction. The display device further includes an optical effect layer and electrode sets. The electrode sets respectively overlap different portions of the optical effect layer and are configured for sequentially starting affecting the different portions of the optical effect layer such that the optical effect layer appears to display a light-blocking section that moves in the moving direction and overlaps the transition region.
Abstract:
A 3-dimensional image display device and a driving method thereof, the method including using a first array of a matrix of unit pixels to form an image while a remaining array of the unit pixels displays black, and forming openings in a barrier panel to expose the unit pixels of the first array, the width of the openings ranging from 1.5 to 2 times the width of the exposed unit pixels.
Abstract:
A 3-dimensional image display device and a driving method thereof, the method including using a first array of a matrix of unit pixels to form an image while a remaining array of the unit pixels displays black, and forming openings in a barrier panel to expose the unit pixels of the first array, the width of the openings ranging from 1.5 to 2 times the width of the exposed unit pixels.
Abstract:
A display device includes a display panel configured to receive a first-frame image signal for displaying a first-frame image in a first frame. The display panel is further configured to receive a second-frame image signal for displaying a second-frame image in a second frame that immediately follows the first frame such that the display panel appears to display a transition region associated with a boundary between a portion of the first-frame image and a portion of the second-frame image and moving in a moving direction. The display device further includes an optical effect layer and electrode sets. The electrode sets respectively overlap different portions of the optical effect layer and are configured for sequentially starting affecting the different portions of the optical effect layer such that the optical effect layer appears to display a light-blocking section that moves in the moving direction and overlaps the transition region.
Abstract:
A display device includes a display panel configured to receive a first-frame image signal for displaying a first-frame image in a first frame. The display panel is further configured to receive a second-frame image signal for displaying a second-frame image in a second frame that immediately follows the first frame such that the display panel appears to display a transition region associated with a boudary between a portion of the first-frame image and a portion of the second-frame image and moving in a moving direction. The display device further includes an optical effect layer and electrode sets. The electrode sets respectively overlap different portions of the optical effect layer and are configured for sequentially starting affecting the different portions of the optical effect layer such that the optical effect layer appears to display a light-blocking section that moves in the moving direction and overlaps the transition region.