Abstract:
A display device includes a display panel includes a plurality of pixels driven by a first power voltage and a second power voltage. A display panel driving circuit is configured to receive image data from an external device, output a first voltage control signal for generating an analog supply voltage based on an on-pixel ratio (OPR) of the image data, and output a second voltage control signal for generating the first power voltage and the second power voltage. A DC-DC conversion circuit is configured to generate the analog supply voltage based on the first voltage control signal and generate the first power voltage and the second power voltage based on the second voltage control signal.
Abstract:
A data voltage compensation circuit includes a compensation information provider, a gamma register, and a compensation data voltage provider. The compensation information provider generates a test data voltage based on a test power supply voltage and a test reference voltage, and provides compensation information corresponding to the test data voltage. The gamma register provides a gamma value corresponding to display data. The compensation data voltage provider provides a compensation data voltage based on the gamma value, the compensation information, and a reference voltage. Changes in the reference voltage change a power supply voltage of a display panel.
Abstract:
A display device is disclosed. The device includes a display panel including a plurality of pixels including a first pixel electrically connected to a first data line and a second pixel electrically connected to a second data line. The display device also includes a current path switch configured to electrically connect the first pixel to the second pixel during a voltage drop test operation and electrically disconnect the first pixel from the second pixel during an image display operation. The display device further includes a voltage drop detector electrically connected to an end of the first data line and an end of the second data line, the voltage drop detector being configured to apply a test voltage to the end of the first data line and measure a dropped test voltage at the end of the second data line. The display device additionally includes a line resistance calculator.
Abstract:
A display device is disclosed. The device includes a display panel including a plurality of pixels including a first pixel electrically connected to a first data line and a second pixel electrically connected to a second data line. The display device also includes a current path switch configured to electrically connect the first pixel to the second pixel during a voltage drop test operation and electrically disconnect the first pixel from the second pixel during an image display operation. The display device further includes a voltage drop detector electrically connected to an end of the first data line and an end of the second data line, the voltage drop detector being configured to apply a test voltage to the end of the first data line and measure a dropped test voltage at the end of the second data line. The display device additionally includes a line resistance calculator.
Abstract:
A direct current-to-direct current converter includes: a buck-boost unit configured to receive an input power source supplied through an input power line, where the buck-boost unit outputs a first power source obtained by boosting the input power source and a second power source obtained by dropping the input power source; and a short-circuit sensing unit connected to the input power line and a control signal line, and configured to sense a short circuit between the input power line and the control signal line, where the short-circuit sensing unit turns off the buck-boost unit when the short circuit between the input power line and the control signal line occurs.