Abstract:
A drive circuit includes a first drive transistor coupled between a first supply node and an output pad of an integrated circuit and a second drive transistor coupled between a second supply node and the output pad. The first drive transistor and second drive transistors are controlled by a control signal. A body bias generator circuit is configured to apply a variable first body bias to the first transistor and a variable second body bias to the second transistor. The variable first and second body biases are generated as a function of the control signal and a voltage at the output pad.
Abstract:
A first signal received at a first transistor is compared to a second signal received at a second transistor taking into account a hysteresis value to generate a comparison output. At least one of the first and second transistors has a floating bulk. A switching circuit selectively applies first and second bulk bias voltages to the floating bulk of the first or second transistor in dependence on the comparison output. A third and fourth input signals, setting the hysteresis value, are received at third and fourth transistors and compared to generate differential outputs. At least one of the third and fourth transistors has a floating bulk. A differential amplifier determines a difference between the differential outputs for application to the floating bulk of the at least one of the third and fourth transistor and further for use as one of the first and second bulk bias voltages.
Abstract:
A first signal received at a first transistor is compared to a second signal received at a second transistor taking into account a hysteresis value to generate a comparison output. At least one of the first and second transistors has a floating bulk. A switching circuit selectively applies first and second bulk bias voltages to the floating bulk of the first or second transistor in dependence on the comparison output. A third and fourth input signals, setting the hysteresis value, are received at third and fourth transistors and compared to generate differential outputs. At least one of the third and fourth transistors has a floating bulk. A differential amplifier determines a difference between the differential outputs for application to the floating bulk of the at least one of the third and fourth transistor and further for use as one of the first and second bulk bias voltages.
Abstract:
A drive circuit includes a first drive transistor coupled between a first supply node and an output pad of an integrated circuit and a second drive transistor coupled between a second supply node and the output pad. The first drive transistor and second drive transistors are controlled by a control signal. A body bias generator circuit is configured to apply a variable first body bias to the first transistor and a variable second body bias to the second transistor. The variable first and second body biases are generated as a function of the control signal and a voltage at the output pad.