Abstract:
A fastener assembly of fastening members formed from connected and collated fasteners mounted in non-contacting clips, for feeding into a fastening tool. The fastening members are driven by a powered fastening tool into deck boards and joists for building a deck or driven into alternate workpieces for building other structures.
Abstract:
A driving tool with tool portion and a gas delivery system. The tool portion includes a linear pneumatic motor that is configured to propel a driver blade. The gas delivery system is configured to deliver a pressurized gas, such as compressed air or nitrogen, to the tool portion for use in operating the linear pneumatic motor. The gas delivery system includes a first inlet, which is connectable to a first source of compressed gas, such as a stationary air compressor, a second inlet, which is connectable to a second source of compressed gas, such as a tank mounted to the tool portion, and a directional valve for selecting between the first and second inlets.
Abstract:
A hand tool for mechanically generating and delivering a driving force to a fastener. The hand tool includes a mechanical force delivery system that is structured and operable to mechanically generate and deliver a driving force to a fastener. The hand tool additionally includes a pneumatic actuation device that is operatively connected to the mechanical force delivery system. The pneumatic actuation device is structured and operable to actuate the mechanical force delivery system such that the mechanical force delivery system mechanically generates and delivers the driving force.
Abstract:
A multi-pressure compressor that includes a roll-cage frame, first and second compressor assemblies mounted in the roll-cage frame, a tank coupler, which is in fluid communication with the second compressor and is configured to be coupled to an auxiliary tank that is rated for an internal pressure in excess of 2500 psi, a bracket that is coupled to the roll-cage frame and configured to receive the auxiliary tank therein, and at least one controller for operating the first and second compressor assemblies.
Abstract:
A fastener driving tool includes a housing, a drive track within the housing, a magazine connected to the housing and configured to hold a supply of fasteners and to provide a leading fastener to the drive track, a driver configured to move downward in the drive track and drive the leading fastener into a workpiece during a drive stroke, a mount connected to the driver, and a clincher operatively connected to the housing and to the mount. The clincher is configured to engage the leading fastener during the drive stroke and move into a clinching position at the end of the drive stroke to clinch the fastener to the workpiece. A motor is configured to rotate a crank arm, and a connecting rod is pivotably connected to the mount at one end portion thereof and pivotably connected to the crank arm at an opposite end portion thereof.
Abstract:
A driving tool with tool portion and a gas delivery system. The tool portion includes a linear pneumatic motor that is configured to propel a driver blade. The gas delivery system is configured to deliver a pressurized gas, such as compressed air or nitrogen, to the tool portion for use in operating the linear pneumatic motor. The gas delivery system includes a first inlet, which is connectable to a first source of compressed gas, such as a stationary air compressor, a second inlet, which is connectable to a second source of compressed gas, such as a tank mounted to the tool portion, and a directional valve for selecting between the first and second inlets.
Abstract:
A method for replacing a clincher anvil of a clincher assembly of a fastener driving tool is provided. The method includes removing a first connector connecting the mount to a connecting rod operatively connected to a motor of the fastener driving tool through a first aperture in the housing, aligning second connector connecting the clincher anvil to a portion of the clinching assembly with a second aperture in the housing, removing the second connector through the second aperture, removing the clincher arm from the fastener driving tool, aligning a replacement clincher arm with the portion of the clinching assembly, inserting the second connector through the second aperture, securing the replacement clincher arm to the portion of the clinching assembly, inserting the first connector through the first aperture and into the mount, and connecting the mount to the connecting rod.
Abstract:
A fastener driving tool includes a housing, a drive track within the housing, a magazine connected to the housing and configured to hold a supply of fasteners and to provide a leading fastener to the drive track, a driver configured to move downward in the drive track and drive the leading fastener into a workpiece during a drive stroke, a mount connected to the driver, and a clincher operatively connected to the housing and to the mount. The clincher is configured to engage the leading fastener during the drive stroke and move into a clinching position at the end of the drive stroke to clinch the fastener to the workpiece. A motor is configured to rotate a crank arm, and a connecting rod is pivotably connected to the mount at one end portion thereof and pivotably connected to the crank arm at an opposite end portion thereof.
Abstract:
A fastening tool includes an actuation device configured to actuate a drive engine of the tool to initiate a drive stroke. The actuation device includes a contact trip assembly operatively connected to the movable portion of the nose assembly. The contact trip assembly a lower contact arm connected to the movable portion of the nose assembly biased in the retracted position and movable to the extended position with the moveable portion of the nose assembly, and an upper contact arm operatively connected to the lower contact arm. The actuation device includes a trigger assembly that includes a trigger, a trigger arm pivotally supported by the trigger and configured to interact with the upper contact arm, and a check pawl configured to engage an opening in the upper contact arm when the upper contact arm moves downward to prevent the tool from being operated in a contact trip mode.
Abstract:
A multi-pressure compressor that includes a roll-cage frame, first and second compressor assemblies mounted in the roll-cage frame, a tank coupler, which is in fluid communication with the second compressor and is configured to be coupled to an auxiliary tank that is rated for an internal pressure in excess of 2500 psi, a bracket that is coupled to the roll-cage frame and configured to receive the auxiliary tank therein, and at least one controller for operating the first and second compressor assemblies.