Abstract:
A bus bar assembly and current measuring device configured to reduce measurement errors through linearity compensation and temperature compensation for the difference in values of two or more measured currents, thereby achieving high-accuracy current measurement, is presented. The present invention discloses a bus bar assembly including: a first conductive plate and a second conductive plate each composed of a plurality of parts; and an insulator formed between the first conductive plate and the second conductive plate, wherein a common first terminal hole is formed at one end of the first conductive plate, one end of the second conductive plate, and one end of the insulator, a common second terminal hole is formed at respective opposite ends of the first conductive plate, the second conductive plate, and the insulator. According to the present invention, stable and highly reliable current measurement is possible through multiple shunt resistors based on a redundancy design.
Abstract:
The present invention provides a battery monitoring method, which is performed by a battery monitoring device, including: measuring a first voltage drop across both ends of a first shunt resistor of a bus bar electrically connected to a battery and a second voltage drop across both ends of a second shunt resistor, which is in parallel or serial connection with the first shunt resistor; calculating a first current and a second current flowing, respectively, through the first shunt resistor and the second shunt resistor using a first voltage drop value and a second voltage drop value; and determining a state of the battery using a difference between a first current value and a second current value. According to the present invention, it is possible to increase the reliability of monitoring information related to the battery's state by utilizing current values that have undergone linearity compensation and temperature compensation.
Abstract:
A complex protection device for blocking an abnormal state of current and voltage is disclosed. In the complex protection device, a resistive element is configured in the form of a structure and thus the resistive element has enhanced durability and surface mounting technology suitable for automation may be utilized, and a plurality of resistive elements is configured in various resistances and sizes to be optimally designed for product characteristics.
Abstract:
A complex protection device for blocking an abnormal state of current and voltage is disclosed. In the complex protection device, a resistive element is configured in the form of a structure, and thus, the resistive element has enhanced durability, surface mounting technology suitable for automation may be used, and an insulation distance may be sufficiently secured when a fusible element is blown out.