Method and System for Disease Quantification of Anatomical Structures

    公开(公告)号:US20220351863A1

    公开(公告)日:2022-11-03

    申请号:US17726307

    申请日:2022-04-21

    Abstract: This disclosure discloses a method and system for predicting disease quantification parameters for an anatomical structure. The method includes extracting a centerline structure based on a medical image. The method further includes predicting the disease quantification parameter for each sampling point on the extracted centerline structure by using a GNN, with each node corresponds to a sampling point on the extracted centerline structure and each edge corresponds to a spatial constraint relationship between the sampling points. For each node, a local feature is extracted based on the image patch for the corresponding sampling point by using a local feature encoder, and a global feature is extracted by using a global feature encoder based on a set of image patches for a set of sampling points, which include the corresponding sampling point and have a spatial constraint relationship defined by the centerline structure. Then, an embed feature is obtained based on both the local feature and the global feature and input into to the node. The method is able to integrate local and global consideration factors of the sampling points into the GNN to improve the prediction accuracy.

    METHOD AND SYSTEM FOR REPRESENTATION LEARNING WITH SPARSE CONVOLUTION

    公开(公告)号:US20220392059A1

    公开(公告)日:2022-12-08

    申请号:US17558756

    申请日:2021-12-22

    Abstract: Embodiments of the disclosure provide methods and systems for representation learning from a biomedical image with a sparse convolution. The exemplary system may include a communication interface configured to receive the biomedical image acquired by an image acquisition device. The system may further include at least one processor, configured to extract a structure of interest from the biomedical image. The at least one processor is also configured to generate sparse data representing the structure of interest and input features corresponding to the sparse data. The at least one processor is further configured to apply a sparse-convolution-based model to the biomedical image, the sparse data, and the input features to generate a biomedical processing result for the biomedical image. The sparse-convolution-based model performs one or more neural network operations including the sparse convolution on the sparse data and the input features.

    Method and System for Anatomical Labels Generation

    公开(公告)号:US20220344033A1

    公开(公告)日:2022-10-27

    申请号:US17726039

    申请日:2022-04-21

    Abstract: The present disclosure relates to a method and a system for generating anatomical labels of an anatomical structure. The method includes receiving an anatomical structure with an extracted centerline, or a medical image containing the anatomical structure with the extracted centerline; and predicting the anatomical labels of the anatomical structure based on the centerline of the anatomical structure, by utilizing a trained deep learning network. The deep learning network includes a branched network, a Graph Neural Network, a Recurrent Neural Network and a Probability Graph Model, which are connected sequentially in series. The branched network includes at least two branch networks in parallel. The method in the disclosure can automatically generate the anatomical labels of the whole anatomical structure in medical image end to end and provide high prediction accuracy and reliability.

Patent Agency Ranking