Abstract:
A light emitting diode having a plurality of light emitting cells is provided. The light emitting diode according to an exemplary embodiment includes a lower insulation layer covering an ohmic reflection layer, connectors disposed on the lower insulation layer to connect the light emitting cells, and an upper insulation layer covering the connectors and the lower insulation layer. An edge of the lower insulation layer is spaced apart farther from an edge of the upper insulation layer than an edge of the light emitting cell. The lower insulation layer susceptible to moisture may be protected and reliability of the light emitting diode may improve.
Abstract:
A light emitting diode includes a first conductivity type semiconductor layer, a mesa disposed on the first conductivity type semiconductor layer, and including an active layer and a second conductivity type semiconductor layer, and a lower insulation layer covering the mesa and at least a portion of the first conductivity type semiconductor layer exposed around the mesa, and having a first opening for allowing electrical connection to the first conductivity type semiconductor layer and a second opening for allowing electrical connection to the second conductivity type semiconductor layer. The active layer generates light having a peak wavelength of about 500 nm or less, and the lower insulation layer includes a distributed Bragg reflector.
Abstract:
A chip-scale package type light emitting diode includes a first conductivity type semiconductor layer, a mesa, a second conductivity type semiconductor layer, a transparent conductive oxide layer, a dielectric layer, a lower insulation layer, a first pad metal layer, and a second pad metal layer, an upper insulation layer. The upper insulation layer covers the first pad metal layer and the second pad metal layer, and includes a first opening exposing the first pad metal layer and a second opening exposing the second pad metal layer. The openings of the dielectric layer include openings that have different sizes from one another.
Abstract:
A light-emitting diode package, including a package body and leads, the package body including a mounting surface, a light-emitting structure disposed on the mounting surface, the light-emitting structure including an active layer disposed between a first conductive-type semiconductor layer and a second conductive-type semiconductor layer, a phosphor layer disposed on the light-emitting structure, and a distributed Bragg reflector disposed between the light-emitting structure and the mounting surface. The distributed Bragg reflector includes a first distributed Bragg reflector and a second distributed Bragg reflector, and an optical thickness of material layers within the first distributed Bragg reflector is greater than an optical thickness of material layers within the second distributed Bragg reflector.
Abstract:
AC LED according to the present invention comprises a substrate, and at least one serial array having a plurality of light emitting cells connected in series on the substrate. Each of the light emitting cells comprises a lower semiconductor layer consisting of a first conductive compound semiconductor layer formed on top of the substrate, an upper semiconductor layer consisting of a second conductive compound semiconductor layer formed on top of the lower semiconductor layer, an active layer interposed between the lower and upper semiconductor layers, a lower electrode formed on the lower semiconductor layer exposed at a first corner of the substrate, an upper electrode layer formed on the upper semiconductor layer, and an upper electrode pad formed on the upper electrode layer exposed at a second corner of the substrate. The upper electrode pad and the lower electrode are respectively disposed at the corners diagonally opposite to each other, and the respective light emitting cells are arranged so that the upper electrode pad and the lower electrode of one of the light emitting cells are symmetric with is respect to those of adjacent another of the light emitting cells.
Abstract:
A chip-scale package type light emitting diode includes a first conductivity type semiconductor layer, a mesa, a second conductivity type semiconductor layer, a transparent conductive oxide layer, a dielectric layer, a lower insulation layer, a first pad metal layer, and a second pad metal layer, an upper insulation layer. The upper insulation layer covers the first pad metal layer and the second pad metal layer, and includes a first opening exposing the first pad metal layer and a second opening exposing the second pad metal layer. The openings of the dielectric layer include openings that have different sizes from one another.
Abstract:
An exemplary embodiment discloses a light emitting diode including a first light emitting cell and a second light emitting cell disposed on a substrate, the first light emitting cell and the second light emitting cell being spaced apart from each other. The light emitting diode also includes a first zinc oxide (ZnO) layer disposed on the first light emitting cell, the first ZnO layer being electrically connected to the first light emitting cell. The light emitting diode also includes a current blocking layer disposed between a portion of the first light emitting cell and the first ZnO layer, an interconnection electrically connecting the first light emitting cell and the second light emitting cell, and an insulation layer disposed between the interconnection and a side surface of the first light emitting cell. The current blocking layer and a first side of insulation layer are connected to each other.
Abstract:
Exemplary embodiments of the present invention provide a light emitting diode including a first light emitting cell and a second light emitting cell disposed on a substrate and spaced apart from each other, a first transparent electrode layer disposed on the first light emitting cell and electrically connected to the first light emitting cell, a current blocking layer disposed between a portion of the first light emitting cell and the first transparent electrode layer, an interconnection electrically connecting the first light emitting cell and the second light emitting cell, and an insulation layer disposed between the interconnection and a side surface of the first light emitting cell. The current blocking layer and the insulation layer are connected to each other.
Abstract:
A light emitting diode having a plurality of light emitting cells is provided. The light emitting diode according to an exemplary embodiment includes a lower insulation layer covering an ohmic reflection layer, connectors disposed on the lower insulation layer to connect the light emitting cells, and an upper insulation layer covering the connectors and the lower insulation layer. An edge of the lower insulation layer is spaced apart farther from an edge of the upper insulation layer than an edge of the light emitting cell. The lower insulation layer susceptible to moisture may be protected and reliability of the light emitting diode may improve.
Abstract:
A light emitting diode chip having improved light extraction efficiency is provided. The light emitting diode chip includes a substrate, a first conductivity type semiconductor layer, a mesa, a side coating layer, and a reflection structure. The first conductivity type semiconductor layer is disposed on the substrate. The mesa includes an active layer and a second conductivity type semiconductor layer. The mesa is disposed on a partial region of the first conductivity type semiconductor layer to expose an upper surface of the first conductivity type semiconductor layer along an edge of the first conductivity type semiconductor layer. The side coating layer(s) covers a side surface of the mesa. The reflection structure is spaced apart from the side coating layer(s) and disposed on the exposed first conductivity type semiconductor layer.