Abstract:
A liquid saturation may be identified from nuclear magnetic resonance (NMR) data having overlapping peaks indicative of two liquids by, generally, identifying a first endpoint based at least in part on the T2 NMR data for the first liquid, and identifying a second endpoint based at least in part on the T2 NMR data for the second liquid. Then, the liquid saturation is identified by relating a composition of the first liquid for an overlapping distribution region based at least in part on the first endpoint and the second endpoint. In some embodiments, the liquid saturation is identified based on an interpolation between the first endpoint and the second endpoint.
Abstract:
A method for generating a model of a formation property includes acquiring a formation property measurement. A petrophysical quantity is inverted from the formation property measurement. A model is generated based on the inverted petrophysical quantity.
Abstract:
A method for determining a wettability of a subterranean formation (or formation core) includes either deploying a nuclear magnetic resonance (NMR) logging tool in a subterranean wellbore or deploying a formation core sample in a laboratory based NMR tool. NMR measurements of the formation (or formation core) are obtained and used to compute the wettability. The NMR measurements are processed to generate a two dimensional diffusion relaxation map (a D/T2 map) which is in turn processed to compute the wettability.
Abstract:
A method for estimation of water properties and hydrocarbon properties in a subsurface formation includes acquiring a plurality of well log measurements from the subsurface formation. The water properties and the hydrocarbon properties are parameterized with respect to a selected set of well log measurements. A simultaneous or sequential inversion is performed to estimate the water properties and the hydrocarbon properties.
Abstract:
A method for estimation of water properties and hydrocarbon properties in a subsurface formation include acquiring a plurality of well log measurements from the subsurface formation. The water properties and the formation properties are parameterized with respect to a selected set of well log measurements. The parameterized water properties, the parameterized formation properties and the well log measurements are graphically displayed to estimate the water properties.
Abstract:
A liquid saturation may be identified from nuclear magnetic resonance (NMR) data having overlapping peaks indicative of two liquids by, generally, identifying a first endpoint based at least in part on the T2 NMR data for the first liquid, and identifying a second endpoint based at least in part on the T2 NMR data for the second liquid. Then, the liquid saturation is identified by relating a composition of the first liquid for an overlapping distribution region based at least in part on the first endpoint and the second endpoint. In some embodiments, the liquid saturation is identified based on an interpolation between the first endpoint and the second endpoint.
Abstract:
A method includes obtaining measurements of a formation parameter prior to and after treatment of at least one formation penetrated a wellbore formed in the subsurface formation. The measurement correspond to a plurality of lateral depths of investigation. A difference is determined at each depth of investigation between the measurements made prior to and after the treatment. A skin effect is determined for each depth of investigation.
Abstract:
A method for determining a volume of a constituent(s) in a geological formation may include generating an equation of state based upon log measurements for the geological formation, with the equation of state providing a correlation between the log measurements, determining a quality factor for the equation of state, and for each of a plurality of different constituents expected to be in the formation, determining a constituent compliance factor for each of the constituents. The method may further include determining an uncertainty for each constituent compliance factor, determining a likelihood that each constituent is present in the formation based upon the quality factor, the constituent compliance factor for the constituent, and the uncertainty for the constituent compliance factor, generating a volumetric model based upon the log measurements and the determined likelihoods of the constituents in the formation, and determining the volume of the constituent(s) based upon the volumetric model.
Abstract:
A method for estimation of water properties and hydrocarbon properties in a subsurface formation include acquiring a plurality of well log measurements from the subsurface formation. The water properties and the formation properties are parameterized with respect to a selected set of well log measurements. The parameterized water properties, the parameterized formation properties and the well log measurements are graphically displayed to estimate the water properties.
Abstract:
A method for determining a volume of a constituent(s) in a geological formation may include generating an equation of state based upon log measurements for the geological formation, with the equation of state providing a correlation between the log measurements, determining a quality factor for the equation of state, and for each of a plurality of different constituents expected to be in the formation, determining a constituent compliance factor for each of the constituents. The method may further include determining an uncertainty for each constituent compliance factor, determining a likelihood that each constituent is present in the formation based upon the quality factor, the constituent compliance factor for the constituent, and the uncertainty for the constituent compliance factor, generating a volumetric model based upon the log measurements and the determined likelihoods of the constituents in the formation, and determining the volume of the constituent(s) based upon the volumetric model.