Abstract:
Mechanisms and methods for pushing data to a plurality of devices of a plurality of organizations are provided. Queries are handled in bulk for a group of users of an organization or the entire organization, and limited results are sent to a middle tier server between the database system and the user devices. These mechanisms and methods for pushing data to a plurality of devices enable an efficient and transparent transfer of data to user devices. This efficient and transparent transfer of data can enable mobile devices of many organizations to seamlessly have the data that is required to perform business.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for creating mobile custom views for tenants of an on-demand database service. These mechanisms and methods for creating mobile custom views for tenants of an on-demand database service can enable embodiments to allow tenants to create and push instructions for generating user-defined views to mobile devices, etc. The ability of embodiments to provide such feature may allow tenants to efficiently and effectively create interfaces on mobile devices.
Abstract:
Mechanisms and methods are provided for optimizing data synchronization between clients and database systems. These mechanisms and methods provide optimizations for synchronization requests, by either breaking a synchronization request into multiple smaller requests, or by executing different code routines for differing client types, or by pre-caching data that a user is anticipated to want at a future point. Such optimization techniques can enable clients with varying capacities (e.g., mobile client vs. full desktop client) to optimally utilize their respective device capabilities.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for creating mobile custom views for tenants of an on-demand database service. These mechanisms and methods for creating mobile custom views for tenants of an on-demand database service can enable embodiments to allow tenants to create and push instructions for generating user-defined views to mobile devices, etc. The ability of embodiments to provide such feature may allow tenants to efficiently and effectively create interfaces on mobile devices.
Abstract:
Mechanisms and methods for pushing data to a plurality of devices of a plurality of organizations are provided. Queries are handled in bulk for a group of users of an organization or the entire organization, and limited results are sent to a middle tier server between the database system and the user devices. These mechanisms and methods for pushing data to a plurality of devices enable an efficient and transparent transfer of data to user devices. This efficient and transparent transfer of data can enable mobile devices of many organizations to seamlessly have the data that is required to perform business.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for receiving a command to define at least one mobilized object that implements a view for at least one mobile device of data retrieved from an on-demand service. These mechanisms and methods further include generating the mobilized object including the at least one instruction for defining the view for the at least one mobile device, and pushing the mobilized object to the at least one mobile device.
Abstract:
Mechanisms and methods are provided for optimizing data synchronization between clients and database systems. These mechanisms and methods provide optimizations for synchronization requests, by either breaking a synchronization request into multiple smaller requests, or by executing different code routines for differing client types, or by pre-caching data that a user is anticipated to want at a future point. Such optimization techniques can enable clients with varying capacities (e.g., mobile client vs. full desktop client) to optimally utilize their respective device capabilities.
Abstract:
Mechanisms and methods are provided for optimizing data synchronization between clients and database systems. These mechanisms and methods provide optimizations for synchronization requests, by either breaking a synchronization request into multiple smaller requests, or by executing different code routines for differing client types, or by pre-caching data that a user is anticipated to want at a future point. Such optimization techniques can enable clients with varying capacities (e.g., mobile client vs. full desktop client) to optimally utilize their respective device capabilities.
Abstract:
Mechanisms and methods are provided for optimizing data synchronization between clients and database systems. These mechanisms and methods provide optimizations for synchronization requests, by either breaking a synchronization request into multiple smaller requests, or by executing different code routines for differing client types, or by pre-caching data that a user is anticipated to want at a future point. Such optimization techniques can enable clients with varying capacities (e.g., mobile client vs. full desktop client) to optimally utilize their respective device capabilities.