Method, device and computer program for creating a deep neural network

    公开(公告)号:US11531888B2

    公开(公告)日:2022-12-20

    申请号:US16757186

    申请日:2018-10-15

    Abstract: A method for creating a deep neural network. The deep neural network includes a plurality of layers and connections having weights, and the weights in the created deep neural network are able to assume only predefinable discrete values from a predefinable list of discrete values. The method includes: providing at least one training input variable for the deep neural network; ascertaining a variable characterizing a cost function, which includes a first variable, which characterizes a deviation of an output variable of the deep neural network ascertained as a function of the provided training input variable relative to a predefinable setpoint output variable, and the variable characterizing the cost function further including at least one penalization variable, which characterizes a deviation of a value of one of the weights from at least one of at least two of the predefinable discrete values; training the deep neural network.

    Lossy data compressor for vehicle control systems

    公开(公告)号:US11150657B2

    公开(公告)日:2021-10-19

    申请号:US16420440

    申请日:2019-05-23

    Abstract: A lossy data compressor for physical measurement data, comprising a parametrized mapping network hat, when applied to a measurement data point x in a space X, produces a point z in a lower-dimensional manifold Z, and configured to provide a point z on manifold Z as output in response to receiving a data point x as input, wherein the manifold Z is a continuous hypersurface that only admits fully continuous paths between any two points on the hypersurface; and the parameters θ of the mapping network are trainable or trained towards an objective that comprises minimizing, on the manifold Z, a distance between a given prior distribution PZ and a distribution PQ induced on manifold Z by mapping a given set PD of physical measurement data from X onto Z using the mapping network, according to a given distance measure.

    METHOD, DEVICE AND COMPUTER PROGRAM FOR CREATING A DEEP NEURAL NETWORK

    公开(公告)号:US20200342315A1

    公开(公告)日:2020-10-29

    申请号:US16757186

    申请日:2018-10-15

    Abstract: A method for creating a deep neural network. The deep neural network includes a plurality of layers and connections having weights, and the weights in the created deep neural network are able to assume only predefinable discrete values from a predefinable list of discrete values. The method includes: providing at least one training input variable for the deep neural network; ascertaining a variable characterizing a cost function, which includes a first variable, which characterizes a deviation of an output variable of the deep neural network ascertained as a function of the provided training input variable relative to a predefinable setpoint output variable, and the variable characterizing the cost function further including at least one penalization variable, which characterizes a deviation of a value of one of the weights from at least one of at least two of the predefinable discrete values; training the deep neural network.

Patent Agency Ranking