Optimized stochastic resonance signal detection method

    公开(公告)号:US08131512B2

    公开(公告)日:2012-03-06

    申请号:US12710143

    申请日:2010-02-22

    IPC分类号: H04B15/00 G06F19/00

    摘要: Apparatus and method for detecting micro-calcifications in mammograms using novel algorithms and stochastic resonance noise is provided, where a suitable dose of noise is added to the abnormal mammograms such that the performance of a suboptimal lesion detector is improved without altering the detector's parameters. A stochastic resonance noise-based detection approach is presented to improve suboptimal detectors which suffer from model mismatch due to the Gaussian assumption. Furthermore, a stochastic resonance noise-based detection enhancement framework is presented to deal with more general model mismatch cases.

    Methods of Improving Detectors and Classifiers Using Optimized Stochastic Resonance Noise
    2.
    发明申请
    Methods of Improving Detectors and Classifiers Using Optimized Stochastic Resonance Noise 有权
    使用优化的随机共振噪声改进检测器和分类器的方法

    公开(公告)号:US20120278039A1

    公开(公告)日:2012-11-01

    申请号:US13410949

    申请日:2012-03-02

    IPC分类号: G06F17/18

    摘要: Apparatus and method for improving the performance of a threshold-based detector or classifier, or a generic detector or classifier and increasing the probability of detecting at least one object in an image using novel algorithms and stochastic resonance noise is provided, where a suitable dose of noise is introduced to the image data such that the performance of the above-referenced detectors or classifiers is improved without altering the detector's or classifier's parameters. Several stochastic resonance (SR) noise-based detection and classification enhancement schemes are presented. The SR noise-enhanced detection and classification schemes can improve any algorithms and systems. To implement these schemes, the only knowledge that is needed is the original input data (no matter 1D, 2D, 3D or others) and the output (detection results) of the existing algorithms and systems.

    摘要翻译: 提供了一种用于改进基于阈值的检测器或分类器或通用检测器或分类器的性能并且增加使用新颖算法和随机共振噪声来检测图像中的至少一个对象的概率的装置和方法,其中适当剂量的 将噪声引入到图像数据中,使得上述参考的检测器或分类器的性能得到改善而不改变检测器或分类器的参数。 提出了几种随机共振(SR)噪声检测和分类增强方案。 SR噪声增强检测和分类方案可以改进任何算法和系统。 为了实现这些方案,唯一需要知道的是原始输入数据(无论是1D,2D,3D还是其他)和现有算法和系统的输出(检测结果)。

    Methods of improving detectors and classifiers using optimized stochastic resonance noise
    3.
    发明授权
    Methods of improving detectors and classifiers using optimized stochastic resonance noise 有权
    使用优化的随机共振噪声改进检测器和分类器的方法

    公开(公告)号:US09026404B2

    公开(公告)日:2015-05-05

    申请号:US13410949

    申请日:2012-03-02

    摘要: Apparatus and method for improving the performance of a threshold-based detector or classifier, or a generic detector or classifier and increasing the probability of detecting at least one object in an image using novel algorithms and stochastic resonance noise is provided, where a suitable dose of noise is introduced to the image data such that the performance of the above-referenced detectors or classifiers is improved without altering the detector's or classifier's parameters. Several stochastic resonance (SR) noise-based detection and classification enhancement schemes are presented. The SR noise-enhanced detection and classification schemes can improve any algorithms and systems. To implement these schemes, the only knowledge that is needed is the original input data (no matter 1D, 2D, 3D or others) and the output (detection results) of the existing algorithms and systems.

    摘要翻译: 提供了一种用于改进基于阈值的检测器或分类器或通用检测器或分类器的性能并且增加使用新颖算法和随机共振噪声来检测图像中的至少一个对象的概率的装置和方法,其中适当剂量的 将噪声引入到图像数据中,使得上述参考的检测器或分类器的性能得到改善而不改变检测器或分类器的参数。 提出了几种随机共振(SR)噪声检测和分类增强方案。 SR噪声增强检测和分类方案可以改进任何算法和系统。 为了实现这些方案,唯一需要知道的是原始输入数据(无论是1D,2D,3D还是其他)和现有算法和系统的输出(检测结果)。

    Optimized stochastic resonance signal detection method
    4.
    发明授权
    Optimized stochastic resonance signal detection method 有权
    优化随机共振信号检测方法

    公开(公告)号:US08214177B2

    公开(公告)日:2012-07-03

    申请号:US12710143

    申请日:2010-02-22

    IPC分类号: H04B15/00 G06F19/00

    摘要: Apparatus and method for detecting micro-calcifications in mammograms using novel algorithms and stochastic resonance noise is provided, where a suitable dose of noise is added to the abnormal mammograms such that the performance of a suboptimal lesion detector is improved without altering the detector's parameters. A stochastic resonance noise-based detection approach is presented to improve suboptimal detectors which suffer from model mismatch due to the Gaussian assumption. Furthermore, a stochastic resonance noise-based detection enhancement framework is presented to deal with more general model mismatch cases.

    摘要翻译: 提供了使用新颖的算法和随机共振噪声来检测乳房X线照片中的微钙化的装置和方法,其中将适当剂量的噪声添加到异常乳房X线照片中,使得不优选检测器的参数改善了次最佳病变检测器的性能。 提出了一种基于随机共振噪声的检测方法,以改进由于高斯假设而遭受模型不匹配的次优检测器。 此外,提出了一种随机共振噪声检测增强框架来处理更一般的模型不匹配情况。

    Optimized Stochastic Resonance Signal Detection Method
    5.
    发明申请
    Optimized Stochastic Resonance Signal Detection Method 有权
    优化随机共振信号检测方法

    公开(公告)号:US20100169051A1

    公开(公告)日:2010-07-01

    申请号:US12710143

    申请日:2010-02-22

    IPC分类号: G06F15/00

    摘要: Apparatus and method for detecting micro-calcifications in mammograms using novel algorithms and stochastic resonance noise is provided, where a suitable dose of noise is added to the abnormal mammograms such that the performance of a suboptimal lesion detector is improved without altering the detector's parameters. A stochastic resonance noise-based detection approach is presented to improve suboptimal detectors which suffer from model mismatch due to the Gaussian assumption. Furthermore, a stochastic resonance noise-based detection enhancement framework is presented to deal with more general model mismatch cases.

    摘要翻译: 提供了使用新颖的算法和随机共振噪声来检测乳房X线照片中的微钙化的装置和方法,其中将适当剂量的噪声添加到异常乳房X线照片中,使得不优选检测器的参数改善了次最佳病变检测器的性能。 提出了一种基于随机共振噪声的检测方法,以改进由于高斯假设而遭受模型不匹配的次优检测器。 此外,提出了一种随机共振噪声检测增强框架来处理更一般的模型不匹配情况。

    Optimization of multiple candidates in medical device or feature tracking
    6.
    发明授权
    Optimization of multiple candidates in medical device or feature tracking 有权
    在医疗设备或功能跟踪中优化多个候选人

    公开(公告)号:US08787635B2

    公开(公告)日:2014-07-22

    申请号:US13097497

    申请日:2011-04-29

    摘要: Multiple candidates are optimized in medical device or feature tracking. Possible locations of medical devices or features for each of a plurality of different times are received. The possible locations of devices are modeled using a probability function. An iterative solution to obtain the maximum of the probability function determines the possible locations to be used as the locations of the medical devices or features for each time. Where two or more medical devices or features are provided with a geometric relationship, such as being connected by a detected guide wire, the probability function may account for the geometric relationship, such as a geodesic distance between the possible locations for the two medical devices.

    摘要翻译: 多个候选人在医疗设备或功能跟踪中进行了优化。 接收用于多个不同时间中的每一个的医疗装置或特征的可能位置。 使用概率函数对设备的可能位置进行建模。 获得最大概率函数的迭代解决方案确定了用作每次医疗设备或特征位置的可能位置。 当两个或更多个医疗装置或特征被提供有几何关系(例如通过检测到的导丝连接)时,概率函数可以解释几何关系,例如两个医疗装置的可能位置之间的测地距离。

    OPTIMIZATION OF MULTIPLE CANDIDATES IN MEDICAL DEVICE OR FEATURE TRACKING
    7.
    发明申请
    OPTIMIZATION OF MULTIPLE CANDIDATES IN MEDICAL DEVICE OR FEATURE TRACKING 有权
    医疗器械或特征追踪中多种候选药物的优化

    公开(公告)号:US20120004533A1

    公开(公告)日:2012-01-05

    申请号:US13097497

    申请日:2011-04-29

    IPC分类号: A61B8/12

    摘要: Multiple candidates are optimized in medical device or feature tracking. Possible locations of medical devices or features for each of a plurality of different times are received. The possible locations of devices are modeled using a probability function. An iterative solution to obtain the maximum of the probability function determines the possible locations to be used as the locations of the medical devices or features for each time. Where two or more medical devices or features are provided with a geometric relationship, such as being connected by a detected guide wire, the probability function may account for the geometric relationship, such as a geodesic distance between the possible locations for the two medical devices.

    摘要翻译: 多个候选人在医疗设备或功能跟踪中进行了优化。 接收用于多个不同时间中的每一个的医疗装置或特征的可能位置。 使用概率函数对设备的可能位置进行建模。 获得最大概率函数的迭代解决方案确定了用作每次医疗设备或特征位置的可能位置。 当两个或更多个医疗装置或特征被提供有几何关系(例如通过检测到的导丝连接)时,概率函数可以解释几何关系,例如两个医疗装置的可能位置之间的测地距离。