DEMAND MODELING AND PREDICTION IN A RETAIL CATEGORY
    2.
    发明申请
    DEMAND MODELING AND PREDICTION IN A RETAIL CATEGORY 有权
    零售类别中的需求建模与预测

    公开(公告)号:US20120303411A1

    公开(公告)日:2012-11-29

    申请号:US13115748

    申请日:2011-05-25

    IPC分类号: G06Q10/00

    CPC分类号: G06Q30/02 G06Q10/087

    摘要: System, method and computer program product for demand modeling and prediction in retail categories. The method uses time-series data comprising of unit prices and unit sales for a designated choice set of related products, with the time-series data obtained over a given sequence of sales reporting periods, and over a collection of stores in a market geography. Other relevant data sets from participating retail entities that include additional product attribute data such as market and consumer factors that affect retail demand are further used. A demand model for improved accuracy is achieved by individual sub-modeling method steps of: estimating a model for price movements and price dynamics from the time series data of unit-prices in the aggregated sales data; estimating a model for market share of each product in the retail category using the aggregated sales data and integrated additional product attribute data; and, estimating generating a model for an overall market demand in the retail category from the aggregated sales data.

    摘要翻译: 零售类需求建模与预测的系统,方法和计算机程序产品。 该方法使用包括相关产品的指定选择集合的单位价格和单位销售的时间序列数据,以及在给定的销售报告期间获得的时间序列数据,以及在市场地理学中的商店集合。 进一步使用参与零售实体的其他相关数据集,其中包括影响零售需求的其他产品属性数据,如市场和消费者因素。 通过个别子建模方法步骤实现提高准确度的需求模型:从聚合销售数据中单位价格的时间序列数据估计价格变动和价格动态模型; 使用聚合销售数据和集成的附加产品属性数据估计零售类别中每个产品的市场份额的模型; 并且从聚合的销售数据估计为零售类别的整体市场需求生成模型。

    Transaction-based intrusion detection
    4.
    发明授权
    Transaction-based intrusion detection 有权
    基于事务的入侵检测

    公开(公告)号:US08776228B2

    公开(公告)日:2014-07-08

    申请号:US13302395

    申请日:2011-11-22

    IPC分类号: G06F21/00 H04L29/06

    摘要: Systems and methods are provided for intrusion detection. The systems and methods may include receiving transaction information related to one or more current transactions between a client entity and a resource server, accessing a database storing a plurality of transaction groups, analyzing the received transaction information with respect to information related to at least one of the plurality of transaction groups, and based on said analyzing, determining a possibility of an occurrence of an intrusion act at the resource server. The transaction groups may be formed based on a plurality of past transactions between a plurality of client entities and the resource server. Identity information of a user associated with the one or more current transactions may also be received along with the transaction information. The user may be associated with at least one of the plurality of transaction groups.

    摘要翻译: 为入侵检测提供了系统和方法。 所述系统和方法可以包括接收与客户实体和资源服务器之间的一个或多个当前事务相关的交易信息,访问存储多个交易组的数据库,分析与所述客户端实体和资源服务器之间的至少一个相关的信息的接收到的交易信息 所述多个事务组,并且基于所述分析,确定在所述资源服务器处发生入侵行为的可能性。 可以基于多个客户端实体和资源服务器之间的多个过去事务来形成事务组。 与一个或多个当前事务相关联的用户的身份信息也可以与交易信息一起被接收。 用户可以与多个交易组中的至少一个相关联。

    METHOD FOR JOINT MODELING OF MEAN AND DISPERSION
    5.
    发明申请
    METHOD FOR JOINT MODELING OF MEAN AND DISPERSION 有权
    方法联合建模平均和分散

    公开(公告)号:US20110046924A1

    公开(公告)日:2011-02-24

    申请号:US12546290

    申请日:2009-08-24

    申请人: Ramesh Natarajan

    发明人: Ramesh Natarajan

    IPC分类号: G06F17/10 G06F17/18

    摘要: The present invention describes a method and system for joint modeling of a mean and dispersion of data. A computing system derives a loss function taking into account distributional requirements over the data. The computing system represents separate regression functions for the mean and the dispersion as stagewise expansion forms. At this time, the stagewise expansion forms include undetermined scalar coefficients and undetermined basis functions. Then, the computing system chooses the basis functions that maximally correlate with a corresponding steepest-descent gradient direction of the loss function. The computing system obtains the scalar coefficients based on a single step of Newton iteration. The computing system completes the regression functions based on the chosen basis functions and obtained scalar coefficients.

    摘要翻译: 本发明描述了用于联合建模数据的平均和分散的方法和系统。 计算系统根据对数据的分配要求,得出损失函数。 计算系统表示平均和分散的分离回归函数作为逐步扩展形式。 此时,阶段性扩展形式包括未确定的标量系数和未确定的基函数。 然后,计算系统选择与损失函数的相应最下降梯度方向最大相关的基函数。 计算系统基于牛顿迭代的单步骤获得标量系数。 计算系统基于所选择的基函数和获得的标量系数完成回归函数。

    SYSTEM AND METHOD FOR AUTOMATING AND SCHEDULING REMOTE DATA TRANSFER AND COMPUTATION FOR HIGH PERFORMANCE COMPUTING
    6.
    发明申请
    SYSTEM AND METHOD FOR AUTOMATING AND SCHEDULING REMOTE DATA TRANSFER AND COMPUTATION FOR HIGH PERFORMANCE COMPUTING 有权
    用于自动化和调度远程数据传输和高性能计算的计算的系统和方法

    公开(公告)号:US20080178179A1

    公开(公告)日:2008-07-24

    申请号:US11624253

    申请日:2007-01-18

    IPC分类号: G06F9/44

    CPC分类号: G06F9/5027

    摘要: The invention pertains to a system and method for a set of middleware components for supporting the execution of computational applications on high-performance computing platform. A specific embodiment of this invention was used to deploy a financial risk application on Blue Gene/L parallel supercomputer. The invention is relevant to any application where the input and output data are stored in external sources, such as SQL databases, where the automatic pre-staging and post-staging of the data between the external data sources and the computational platform is desirable. This middleware provides a number of core features to support these applications including for example, an automated data extraction and staging gateway, a standardized high-level job specification schema, a well-defined web services (SOAP) API for interoperability with other applications, and a secure HTML/JSP web-based interface suitable for non-expert and non-privileged users.

    摘要翻译: 本发明涉及用于在高性能计算平台上支持计算应用的执行的一组中间件组件的系统和方法。 本发明的具体实施方案用于在Blue Gene / L并行超级计算机上部署金融风险应用程序。 本发明涉及将输入和输出数据存储在诸如SQL数据库的外部数据库中的任何应用程序,其中外部数据源和计算平台之间的数据的自动预分段和后期是期望的。 该中间件提供了许多核心功能来支持这些应用程序,例如自动数据提取和登台网关,标准化的高级工作规范模式,与其他应用程序互操作的明确定义的Web服务(SOAP)API,以及 一种适用于非专家和非特权用户的安全的基于HTML / JSP Web的界面。

    Isolating resources between tenants in a software-as-a-service system using the estimated costs of service requests
    7.
    发明授权
    Isolating resources between tenants in a software-as-a-service system using the estimated costs of service requests 失效
    使用服务请求的估计成本在软件即服务系统中隔离租户之间的资源

    公开(公告)号:US08539078B2

    公开(公告)日:2013-09-17

    申请号:US12832559

    申请日:2010-07-08

    CPC分类号: G06F9/5061 G06F9/505

    摘要: An apparatus hosting a multi-tenant software-as-a-service (SaaS) system maximizes resource sharing capability of the SaaS system. The apparatus receives service requests from multiple users belonging to different tenants of the multi-tenant SaaS system. The apparatus partitions the resources in the SaaS system into different resource groups. Each resource group handles a category of the service requests. The apparatus estimates costs of the service requests of the users. The apparatus dispatches service requests to resource groups according to the estimated costs, whereby the resources are shared, among the users, without impacting each other.

    摘要翻译: 托管多租户软件即服务(SaaS)系统的设备最大限度地提高了SaaS系统的资源共享能力。 该设备从属于多租户SaaS系统的不同租户的多个用户接收服务请求。 该设备将SaaS系统中的资源分为不同的资源组。 每个资源组都处理一个服务请求的类别。 该装置估计用户的服务请求的成本。 该设备根据估计的成本向服务请求分配资源,从而在用户之间共享资源,而不会相互影响。

    Method for joint modeling of mean and dispersion
    8.
    发明授权
    Method for joint modeling of mean and dispersion 失效
    平均和分散联合建模方法

    公开(公告)号:US08494821B2

    公开(公告)日:2013-07-23

    申请号:US13616456

    申请日:2012-09-14

    申请人: Ramesh Natarajan

    发明人: Ramesh Natarajan

    IPC分类号: G06F17/10

    摘要: The present invention describes a method for joint modeling of a mean and dispersion of data. A computing system derives a loss function taking into account distributional requirements over the data. The computing system represents separate regression functions for the mean and the dispersion as stagewise expansion forms. At this time, the stagewise expansion forms include undetermined scalar coefficients and undetermined basis functions. Then, the computing system chooses the basis functions that maximally correlate with a corresponding steepest-descent gradient direction of the loss function. The computing system obtains the scalar coefficients based on a single step of Newton iteration. The computing system completes the regression functions based on the chosen basis functions and obtained scalar coefficients.

    摘要翻译: 本发明描述了一种用于联合建模数据的均值和色散的方法。 计算系统根据对数据的分配要求,得出损失函数。 计算系统表示平均和分散的分离回归函数作为逐步扩展形式。 此时,阶段性扩展形式包括未确定的标量系数和未确定的基函数。 然后,计算系统选择与损失函数的相应最下降梯度方向最大相关的基函数。 计算系统基于牛顿迭代的单步骤获得标量系数。 计算系统基于所选择的基函数和获得的标量系数完成回归函数。

    Demand modeling and prediction in a retail category
    9.
    发明授权
    Demand modeling and prediction in a retail category 有权
    零售类别的需求建模与预测

    公开(公告)号:US08386285B2

    公开(公告)日:2013-02-26

    申请号:US13115748

    申请日:2011-05-25

    IPC分类号: G06Q40/00

    CPC分类号: G06Q30/02 G06Q10/087

    摘要: System, method and computer program product for demand modeling and prediction in retail categories. The method uses time-series data comprising of unit prices and unit sales for a designated choice set of related products, with the time-series data obtained over a given sequence of sales reporting periods, and over a collection of stores in a market geography. Other relevant data sets from participating retail entities that include additional product attribute data such as market and consumer factors that affect retail demand are further used. A demand model for improved accuracy is achieved by individual sub-modeling method steps of: estimating a model for price movements and price dynamics from the time series data of unit-prices in the aggregated sales data; estimating a model for market share of each product in the retail category using the aggregated sales data and integrated additional product attribute data; and, estimating generating a model for an overall market demand in the retail category from the aggregated sales data.

    摘要翻译: 零售类需求建模与预测的系统,方法和计算机程序产品。 该方法使用包括相关产品的指定选择集合的单位价格和单位销售的时间序列数据,以及在给定的销售报告期间获得的时间序列数据,以及在市场地理学中的商店集合。 进一步使用参与零售实体的其他相关数据集,其中包括影响零售需求的其他产品属性数据,如市场和消费者因素。 通过个别子建模方法步骤实现提高准确度的需求模型:从聚合销售数据中单位价格的时间序列数据估计价格变动和价格动态模型; 使用聚合销售数据和集成的附加产品属性数据估计零售类别中每个产品的市场份额的模型; 并且从聚合的销售数据估计为零售类别的整体市场需求生成模型。

    MULTIPLE IMPUTATION OF MISSING DATA IN MULTI-DIMENSIONAL RETAIL SALES DATA SETS VIA TENSOR FACTORIZATION
    10.
    发明申请
    MULTIPLE IMPUTATION OF MISSING DATA IN MULTI-DIMENSIONAL RETAIL SALES DATA SETS VIA TENSOR FACTORIZATION 有权
    多维零售销售数据丢失数据的多次打印通过传感器制造

    公开(公告)号:US20130036082A1

    公开(公告)日:2013-02-07

    申请号:US13204237

    申请日:2011-08-05

    IPC分类号: G06N5/02

    CPC分类号: G06Q30/00

    摘要: A system, method and computer program product provides for multiple imputation of missing data elements in retail data sets used for modeling and decision-support applications based on the multi-dimensional, tensor structure of the data sets, and a fast, scalable scheme is implemented that is suitable for large data sets. The method generates multiple imputations comprising a set of complete data sets each containing one of a plurality of imputed realizations for the missing data values in the original data set, so that the variability in the magnitudes of these missing data values can be captured for subsequent statistical analysis. The method is based on the multi-dimensional structure of the retail data sets incorporating tensor factorization, that in a preferred embodiment can be implemented using fast, scalable imputation methods suitable for large data sets, to obtain multiple complete data sets in which the original missing values are replaced by various imputed values.

    摘要翻译: 基于数据集的多维,张量结构,系统,方法和计算机程序产品提供了用于建模和决策支持应用的零售数据集中的丢失数据元素的多个插补,并且实现了快速,可扩展的方案 这适用于大型数据集。 该方法生成包括一组完整数据集的多个插补,每组完整数据集包含原始数据集中缺失数据值的多个插补实现之一,从而可以捕获这些丢失数据值的大小的可变性,用于后续统计 分析。 该方法基于包含张量因子分解的零售数据集的多维结构,在优选实施例中可以使用适用于大数据集的快速,可缩放的插补方法来实现,以获得多个完整数据集,其中原始丢失 值被各种估算值取代。