摘要:
A method of producing an aluminum product comprising providing stock including an aluminum alloy comprising about 4.0 to 4.4 wt. % copper, about 1.25 to 1.5 wt. % magnesium, about 0.35 to 0.5 wt. % manganese, not more than 0.12 wt. % silicon, not more than 0.08 wt. % iron, not more than 0.06 wt. % titanium, the remainder substantially aluminum, incidental elements and impurities; hot working the stock; annealing at 725-875.degree. F.; cold rolling; solution heat treating; cooling; holding for at least 12 hours at room temperature; and cold working from about 4% to 7% thereby producing a product having increased strength and toughness properties.
摘要:
High strength aluminum alloys based on the Al—Zn—Mg—Cu alloy system preferably include high levels of zinc and copper, but modest levels of magnesium, to provide increased tensile strength without sacrificing toughness. Preferred ranges of the elements include by weight, 8.5-10.5% Zn, 1.4-1.85% Mg, 2.25-3.0% Cu and at least one element from the group Zr, V, or Hf not exceeding about 0.5%, the balance substantially aluminum and incidental impurities. In addition, small amounts of scandium (0.05-0.30%) are also preferably employed to prevent recrystallization. During formation of the alloys, homogenization, solution heat treating and artificial aging processes are preferably employed.
摘要:
A product comprising an aluminum base alloy including about 3.8 wt. % copper, about 1.2 wt. % magnesium, about 0.3 to 0.6 wt. % manganese, not more than about 0.15 wt. % silicon, not more than about 0.12 wt. % iron, not more than about 0.1 wt. % titanium, the remainder substantially aluminum, incidental elements and impurities, the product having at least 5% improvement over 2024 alloy in fracture toughness, fatigue crack growth rate, corrosion resistance, and formability properties.
摘要:
High strength aluminum alloys based on the Al—Zn—Mg—Cu alloy system preferably include high levels of zinc and copper, but modest levels of magnesium, to provide increased tensile strength without sacrificing toughness. Preferred ranges of the elements include by weight, 8.5-10.5% Zn, 1.4-1.85% Mg, 2.25-3.0% Cu and at least one element from the group Zr, V, or Hf not exceeding about 0.5%, the balance substantially aluminum and incidental impurities. In addition, small amounts of scandium (0.05-0.30%) are also preferably employed to prevent recrystallization. During formation of the alloys, homogenization, solution heat treating and artificial aging processes are preferably employed.
摘要:
Al--Mg--Sc based alloys include additional elements selected from the group comprising Hf, Mn, Zr, Cu and Zn to improve their tensile properties. The alloys are preferably comprised of aluminum and, in wt. %, 1.0-8.0% Mg, 0.05-0.6% Sc, 0.05-0.20% Hf and/or 0.05-0.20% Zr, and 0.5-2.0% Cu and/or 0.5-2.0% Zn. In addition, 0.1-0.8 wt. % Mn may be added to the alloy to improve its strength characteristics further.
摘要:
High strength aluminum alloys based on the Al—Zn—Mg—Cu alloy system preferably include high levels of zinc and copper, but modest levels of magnesium, to provide increased tensile strength without sacrificing toughness. Preferred ranges of the elements include by weight, 8.5-10.5% Zn, 1.4-1.85% Mg, 2.25-3.0% Cu and at least one element from the group Zr, V, or Hf not exceeding about 0.5%, the balance substantially aluminum and incidental impurities. In addition, small amounts of scandium (0.05-0.30%) are also preferably employed to prevent recrystallization. During formation of the alloys, homogenization, solution heat treating and artificial aging processes are preferably employed.
摘要:
The present invention is a process to use aluminum alloy scrap to manufacture high quality machinable tooling plate. This is an new use for this scrap which has heretofore been used in lower quality products. The tooling plate thus made has superior properties when machined as it produces smaller chips and/or a limited of spirals from the plate. Large chips and long spirals create problems and a smaller chip greatly facilitates the machining operation.
摘要:
A method of producing an aluminum product having high formability high fracture toughness, high strength and improved corrosion resistance, the method comprising: (a) providing stock including an aluminum base alloy consisting essentially of about 0.7 to 1.0 wt. % silicon, not more than about 0.3 wt. % iron, not more than about 0.5 wt. % copper, about 0.8 to 1.1 wt. % magnesium, about 0.3 to 0.4 wt. % manganese, and about 0.5 to 0.8 wt. % zinc, the remainder substantially aluminum, incidental elements and impurities; (b) homogenizing the stock at a temperature ranging from about 950.degree. to 1050.degree. F. for a time period ranging from about 2 to 20 hours; (c) hot rolling at a temperature ranging from about 750.degree. to 950.degree. F. will increase; (d) solution heat treating at a temperature ranging from about 1000.degree. to 1080.degree. F. for a time period ranging from about 5 minutes to one hour; (e) cooling by quenching at a rate of about 1000.degree. F./second to a temperature of 100.degree. F. or lower; and (f) artificially aging by reheating to a temperature ranging from about 300.degree. to 400.degree. F. for a time period ranging from about 2 to 20 hours to produce a T6 temper in the aluminum product.