摘要:
Multicast capability in a virtual private LAN service (VPLS) is provided in a provider IP/MPLS infrastructure without headend replications by encapsulating a customer data packet to use an established multicast protocol, such as IP multicast. In one example, the customer data packet is encapsulated by an IP header having an IP multicast group address and an Ethernet header. In one implementation, a DNS type mechanism is provided to distribute the IP multicast addresses for VPLS use. Such IP multicast group address can be set aside from an administratively scoped address range. An efficient IP routing algorithm running on the provider's network provides an efficient distribution tree for routing IP-encapsulated customer packet for the VPLS.
摘要:
Multicast capability in a virtual private LAN service (VPLS) is provided in a provider IP/MPLS infrastructure without headend replications by encapsulating a customer data packet to use an established multicast protocol, such as IP multicast. In one example, the customer data packet is encapsulated by an IP header having an IP multicast group address and an Ethernet header. In one implementation, a DNS type mechanism is provided to distribute the IP multicast addresses for VPLS use. Such IP multicast group address can be set aside from an administratively scoped address range. An efficient IP routing algorithm running on the provider's network provides an efficient distribution tree for routing IP-encapsulated customer packet for the VPLS.
摘要:
Multicast capability in a virtual private LAN service (VPLS) is provided in a provider IP/MPLS infrastructure without headend replications by encapsulating a customer data packet to use an established multicast protocol, such as IP multicast. In one example, the customer data packet is encapsulated by an IP header having an IP multicast group address and an Ethernet header. In one implementation, a DNS type mechanism is provided to distribute the IP multicast addresses for VPLS use. Such IP multicast group address can be set aside from an administratively scoped address range. An efficient IP routing algorithm running on the provider's network provides an efficient distribution tree for routing IP-encapsulated customer packet for the VPLS.
摘要:
Multicast capability in a virtual private LAN service (VPLS) is provided in a provider IP/MPLS infrastructure without headend replications by encapsulating a customer data packet to use an established multicast protocol, such as IP multicast. In one example, the customer data packet is encapsulated by an IP header having an IP multicast group address and an Ethernet header. In one implementation, a DNS type mechanism is provided to distribute the IP multicast addresses for VPLS use. Such IP multicast group address can be set aside from an administratively scoped address range. An efficient IP routing algorithm running on the provider's network provides an efficient distribution tree for routing IP-encapsulated customer packet for the VPLS.
摘要:
Multicast capability in a virtual private LAN service (VPLS) is provided in a provider IP/MPLS infrastructure without headend replications by encapsulating a customer data packet to use an established multicast protocol, such as IP multicast. In one example, the customer data packet is encapsulated by an IP header having an IP multicast group address and an Ethernet header. In one implementation, a DNS type mechanism is provided to distribute the IP multicast addresses for VPLS use. Such IP multicast group address can be set aside from an administratively scoped address range. An efficient IP routing algorithm running on the provider's network provides an efficient distribution tree for routing IP-encapsulated customer packet for the VPLS.
摘要:
Systems and methods are described for providing network route redundancy through Layer 2 devices, such as a loop free Layer 2 network having a plurality of switching devices. A virtual switch is coupled to the loop free Layer 2 network, the virtual switch having two or more switches configured to transition between master and backup modes to provide redundant support for the loop free Layer 2 network, the switches communicating their status through use of a plurality of redundancy control packets. The system also includes means for allowing the redundancy control packets to be flooded through the Layer 2 network. The means may include time-to-live data attached to the redundancy control packet which is decremented only when the packets are transferred through devices which are configured to recognize the protocol used in redundancy control packets.
摘要:
Systems and methods are described for providing network route redundancy through Layer 2 devices, such as a loop free Layer 2 network having a plurality of switching devices. A virtual switch is coupled to the loop free Layer 2 network, the virtual switch having two or more switches configured to transition between master and backup modes to provide redundant support for the loop free Layer 2 network, the switches communicating their status through use of a plurality of redundancy control packets. The system also includes means for allowing the redundancy control packets to be flooded through the Layer 2 network. The means may include time-to-live data attached to the redundancy control packet which is decremented only when the packets are transferred through devices which are configured to recognize the protocol used in redundancy control packets.
摘要:
Systems and methods are described for providing network route redundancy through Layer 2 devices, such as a loop free Layer 2 network having a plurality of switching devices. A virtual switch is coupled to the loop free Layer 2 network, the virtual switch having two or more switches configured to transition between master and backup modes to provide redundant support for the loop free Layer 2 network, the switches communicating their status through use of a plurality of redundancy control packets. The system also includes means for allowing the redundancy control packets to be flooded through the Layer 2 network. The means may include time-to-live data attached to the redundancy control packet which is decremented only when the packets are transferred through devices which are configured to recognize the protocol used in redundancy control packets.
摘要:
A global server load-balancing (GSLB) switch serves as a proxy to an authoritative DNS and communicates with numerous site switches that are coupled to host servers serving specific applications. The GSLB switch receives from site switches operational information regarding host servers within the site switches neighborhood. When a client program requests a resolution of a host name, the GSLB switch, acting as a proxy of an authoritative DNS, returns one or more ordered IP addresses for the host name. The IP addresses are ordered using metrics that include the information collected from the site switches. In one instance, the GSLB switch places the address that is deemed “best” at the top of the list.
摘要:
A global server load-balancing (GSLB) switch serves as a proxy to an authoritative DNS and communicates with numerous site switches that are coupled to host servers serving specific applications. The GSLB switch receives from site switches operational information regarding host servers within the site switches neighborhood. When a client program requests a resolution of a host name, the GSLB switch, acting as a proxy of an authoritative DNS, returns one or more ordered IP addresses for the host name. The IP addresses are ordered using metrics that include the information collected from the site switches. In one instance, the GSLB switch places the address that is deemed “best” at the top of the list.