摘要:
A flow battery system includes a first tank having a hydrogen reactant, a second tank having a bromine electrolyte, at least one cell including a hydrogen reactant side operably connected to the first tank through an ¾ feed and return system and a bromine electrolyte side operably connected to the second tank, and a crossover return system. The crossover return system includes a vessel operably connected to the ¾ feed and return system and configured to receive an effluent containing a first portion of the hydrogen reactant and a second portion of the bromine electrolyte, the vessel configured to separate the first portion from the second portion. A first return line returns the first portion of the hydrogen reactant to the first tank and a second return line returns the bromine electrolyte to the second tank.
摘要:
A flow battery system includes a first tank including a hydrogen reactant, a second tank including a bromine electrolyte, and at least one cell including a first electrolyte side operably connected to the first tank and a second electrolyte side operably connected to the second tank. The battery system further includes a direct connection line directly connecting the first tank and the second tank and configured such that the hydrogen reactant passes between the first tank and the second tank.
摘要:
A flow battery system includes a first tank including a hydrogen reactant, a second tank including a bromine electrolyte, and at least one cell including a first electrolyte side operably connected to the first tank and a second electrolyte side operably connected to the second tank. The battery system further includes a direct connection line directly connecting the first tank and the second tank and configured such that the hydrogen reactant passes between the first tank and the second tank.
摘要:
A flow battery system includes a first tank having a hydrogen reactant, a second tank having a bromine electrolyte, at least one cell including a hydrogen reactant side operably connected to the first tank through an ¾ feed and return system and a bromine electrolyte side operably connected to the second tank, and a crossover return system. The crossover return system includes a vessel operably connected to the ¾ feed and return system and configured to receive an effluent containing a first portion of the hydrogen reactant and a second portion of the bromine electrolyte, the vessel configured to separate the first portion from the second portion. A first return line returns the first portion of the hydrogen reactant to the first tank and a second return line returns the bromine electrolyte to the second tank.
摘要:
A fuel cell system comprising: a fuel cell, a fuel gas supplier configured to supply fuel gas to an anode of the fuel cell, an oxidant gas supplier configured to supply oxidant gas to a cathode of the fuel cell, a humidity adjuster configured to adjust a relative humidity of the fuel gas and a relative humidity of the oxidant gas, and a controller, wherein the controller detects the relative humidity of the fuel gas at an anode inlet of the fuel cell, and the controller detects the relative humidity of the oxidant gas at a cathode outlet of the fuel cell, and wherein, based on detection results, the controller controls the humidity adjuster so that the relative humidity of the fuel gas at the anode inlet is higher than the relative humidity of the oxidant gas at the cathode outlet.
摘要:
A fuel cell system comprising: a fuel cell, a fuel gas supplier configured to supply fuel gas to an anode of the fuel cell, an oxidant gas supplier configured to supply oxidant gas to a cathode of the fuel cell, a humidity adjuster configured to adjust a relative humidity of the fuel gas and a relative humidity of the oxidant gas, and a controller, wherein the controller detects the relative humidity of the fuel gas at an anode inlet of the fuel cell, and the controller detects the relative humidity of the oxidant gas at a cathode outlet of the fuel cell, and wherein, based on detection results, the controller controls the humidity adjuster so that the relative humidity of the fuel gas at the anode inlet is higher than the relative humidity of the oxidant gas at the cathode outlet.