Abstract:
The present invention relates to the delivery of oligomers for treating patients with a 5′ mutation in their DMD gene other than a DMD exon 2 duplication. The invention provides methods and materials for activating an internal ribosome entry site in exon 5 of the DMD gene resulting in translation of a functional truncated isoform of dystrophin. The methods and materials can be used for the treatment of muscular dystrophies arising from 5′ mutations in the DMD gene such as Duchenne Muscular Dystrophy or Becker Muscular Dystrophy.
Abstract:
The present invention relates to recombinant adeno-associated virus (rAAV) delivery of polynucleotides for treating Duchenne Muscular Dystrophy resulting from the duplication of DMD exon 2. The invention provides rAAV products and methods of using the rAAV in the treatment of Duchenne Muscular Dystrophy.
Abstract:
The present invention relates to recombinant adeno-associated virus (rAAV) delivery of polynucleotides for treating Duchenne Muscular Dystrophy resulting from the duplication of DMD exon 2. The invention provides rAAV products and methods of using the rAAV in the treatment of Duchenne Muscular Dystrophy.
Abstract:
The present invention relates to the delivery of oligomers for treating patients with a 5′ mutation in their DMD gene other than a DMD exon 2 duplication. The invention provides methods and materials for activating an internal ribosome entry site in exon 5 of the DMD gene resulting in translation of a functional truncated isoform of dystrophin. The methods and materials can be used for the treatment of muscular dystrophies arising from 5′ mutations in the DMD gene such as Duchenne Muscular Dystrophy or Becker Muscular Dystrophy.
Abstract:
The present invention relates to recombinant adeno-associated virus (rAAV) delivery of polynucleotides for treating Duchenne Muscular Dystrophy resulting from the duplication of DMD exon 2. The invention provides rAAV products and methods of using the rAAV in the treatment of Duchenne Muscular Dystrophy.
Abstract:
The present invention relates to recombinant adeno-associated virus (rAAV) delivery of polynucleotides for treating Duchenne Muscular Dystrophy resulting from the duplication of DMD exon 2. The invention provides rAAV products and methods of using the rAAV in the treatment of Duchenne Muscular Dystrophy.
Abstract:
The present invention relates to methods for shifting the splicing profile of the DUX4 gene, a double homeobox gene on human chromosome 4q35. Recombinant adeno-associated viruses of the invention deliver DNAs encoding U7-based small nuclear RNAs to induce DUX4 exon-skipping and the expression of shortened forms of DUX4. The methods have application in the treatment of muscular dystrophies such as facioscapulohumeral muscular dystrophy.
Abstract:
The present invention relates to recombinant adeno-associated virus (rAAV) delivery of polynucleotides for treating Duchenne Muscular Dystrophy resulting from the duplication of DMD exon 2. The invention provides rAAV products and methods of using the rAAV in the treatment of Duchenne Muscular Dystrophy.