CT super-resolution GAN constrained by the identical, residual and cycle learning ensemble (GAN-circle)

    公开(公告)号:US11232541B2

    公开(公告)日:2022-01-25

    申请号:US16594567

    申请日:2019-10-07

    Abstract: A system for generating a high resolution (HR) computed tomography (CT) image from a low resolution (LR) CT image is described. The system includes a first generative adversarial network (GAN) and a second GAN. The first GAN includes a first generative neural network (G) configured to receive a training LR image dataset and to generate a corresponding estimated HR image dataset, and a first discriminative neural network (DY) configured to compare a training HR image dataset and the estimated HR image dataset. The second GAN includes a second generative neural network (F) configured to receive the training HR image dataset and to generate a corresponding estimated LR image dataset, and a second discriminative neural network (DX) configured to compare the training LR image dataset and the estimated LR image dataset. The system further includes an optimization module configured to determine an optimization function based, at least in part, on at least one of the estimated HR image dataset and/or the estimated LR image dataset. The optimization function contains at least one loss function. The optimization module is further configured to adjust a plurality of neural network parameters associated with at least one of the first GAN and/or the second GAN, to optimize the optimization function.

    CT super-resolution GAN constrained by the identical, residual and cycle learning ensemble (GAN-circle)

    公开(公告)号:US11854160B2

    公开(公告)日:2023-12-26

    申请号:US17564728

    申请日:2021-12-29

    CPC classification number: G06T3/4076 G06N3/045

    Abstract: A system for generating a high resolution (HR) computed tomography (CT) image from a low resolution (LR) CT image is described. The system includes a first generative adversarial network (GAN) and a second GAN. The first GAN includes a first generative neural network (G) configured to receive a training LR image dataset and to generate a corresponding estimated HR image dataset, and a first discriminative neural network (DY) configured to compare a training HR image dataset and the estimated HR image dataset. The second GAN includes a second generative neural network (F) configured to receive the training HR image dataset and to generate a corresponding estimated LR image dataset, and a second discriminative neural network (DX) configured to compare the training LR image dataset and the estimated LR image dataset. The system further includes an optimization module configured to determine an optimization function based, at least in part, on at least one of the estimated HR image dataset and/or the estimated LR image dataset. The optimization function contains at least one loss function. The optimization module is further configured to adjust a plurality of neural network parameters associated with at least one of the first GAN and/or the second GAN, to optimize the optimization function.

    CT SUPER-RESOLUTION GAN CONSTRAINED BY THE IDENTICAL, RESIDUAL AND CYCLE LEARNING ENSEMBLE (GAN-CIRCLE)

    公开(公告)号:US20220230278A1

    公开(公告)日:2022-07-21

    申请号:US17564728

    申请日:2021-12-29

    Abstract: A system for generating a high resolution (HR) computed tomography (CT) image from a low resolution (LR) CT image is described. The system includes a first generative adversarial network (GAN) and a second GAN. The first GAN includes a first generative neural network (G) configured to receive a training LR image dataset and to generate a corresponding estimated HR image dataset, and a first discriminative neural network (DY) configured to compare a training HR image dataset and the estimated HR image dataset. The second GAN includes a second generative neural network (F) configured to receive the training HR image dataset and to generate a corresponding estimated LR image dataset, and a second discriminative neural network (DX) configured to compare the training LR image dataset and the estimated LR image dataset. The system further includes an optimization module configured to determine an optimization function based, at least in part, on at least one of the estimated HR image dataset and/or the estimated LR image dataset. The optimization function contains at least one loss function. The optimization module is further configured to adjust a plurality of neural network parameters associated with at least one of the first GAN and/or the second GAN, to optimize the optimization function.

Patent Agency Ranking