Abstract:
An electro-optical payload for free space optical communication includes: a plurality of optical beam expanders, each for receiving a respective optical signal; an optical cross-connect switch for directing respective optical signals to respective optical output signals; an electrical-to-optical conversion circuit coupled to an input of the optical cross-connect switch for converting an electrical signal to an optical signal for inputting to the optical cross-connect switch; an optical-to-electrical conversion circuit for converting an optical signal output from the optical cross-connect switch to an electrical signal; and an electrical regeneration circuit including a second optical-to-electrical conversion circuit coupled to an output of the optical cross-connect switch and a second electrical-to-optical conversion circuit coupled to an input of the optical cross-connect switch for converting an optical out signal of the optical cross-connect switch to an electrical signal.
Abstract:
An electro-optical payload for free space optical communication includes: a plurality of optical beam expanders, each for receiving a respective optical signal of incoming optical signals; an optical cross-connect switch for directing respective optical input signals to respective optical output signals; an electrical-to-optical conversion circuit coupled to an input of the optical cross-connect switch for converting an electrical signal to an optical signal for inputting to the optical cross-connect switch; an optical-to-electrical conversion circuit coupled to an output of the optical cross-connect switch for converting an optical signal output from the optical cross-connect switch to an electrical signal; and an electrical regeneration circuit including a second optical-to-electrical conversion circuit coupled to an output of the optical cross-connect switch and a second electrical-to-optical conversion circuit coupled to an input of the optical cross-connect switch for converting an optical out signal of the optical cross-connect switch to an electrical signal.
Abstract:
The disclosure provides a practical system and methods for implementing an adaptive free-space optical network with a high-connectivity, dynamic mesh topology. The network can have operational characteristics similar to those of RF mobile ad-hock networks. Each node has one or more optical terminals that may utilize space-time division multiplexing, which entails rapid spatial hopping of optical beams to provide a high dynamic node degree without incurring high cost or high size, weight, and power requirements. As a consequence the network rapidly sequences through a series of topologies, during each of which connected nodes communicate. Each optical terminal may include a plurality of dedicated acquisition and tracking apertures which can be used to increase the speed at which traffic links can be switched between nodes and change the network topology. An RF overlay network may be provided to act as a control plane and be used to provide node discovery and adaptive route planning for the optical network.
Abstract:
A system includes a network having multiple network nodes each configured for free-space optical communication. Each network node includes one or more apertures through which optical beams are transmitted and received over optical links. The optical links include (i) a traffic link that transports higher-rate traffic between nodes and (ii) an acquisition/tracking link that transports lower-rate signals used to establish and maintain location knowledge of other nodes. Each network node also includes a network processor configured to determine one or more backup paths through the network. Each network node further includes a beam steering unit configured to redirect an optical beam from the traffic link onto the acquisition/tracking link to create a backup traffic link.
Abstract:
A system includes a network having multiple network nodes each configured for free-space optical communication. Each network node includes one or more apertures through which optical beams are transmitted and received over optical links. The optical links include (i) a traffic link that transports higher-rate traffic between nodes and (ii) an acquisition/tracking link that transports lower-rate signals used to establish and maintain location knowledge of other nodes. Each network node also includes a network processor configured to determine one or more backup paths through the network. Each network node further includes a beam steering unit configured to redirect an optical beam from the traffic link onto the acquisition/tracking link to create a backup traffic link.
Abstract:
A laser relay module for free space optical communications including an optical telescope for receiving and transmitting optical beams; an optical diplexer for separating transmitting and received optical beams; an optical amplifier; a modulated beacon laser for line of sight control of a plurality of communicating remote network nodes; a beacon beam detector for detecting an incoming beacon optical beam for line of sight control of the optical telescope and receiving data from other network nodes; and means for inserting an output of the modulated beacon laser into the optical telescope for transmission to another network node, and for transporting the incoming beacon optical beam to the beacon detector.
Abstract:
A laser relay module for free space optical communications including an optical telescope for receiving and transmitting optical beams; an optical diplexer for separating transmitting and received optical beams; an optical amplifier; a modulated beacon laser for line of sight control of a plurality of communicating remote network nodes; a beacon beam detector for detecting an incoming beacon optical beam for line of sight control of the optical telescope and receiving data from other network nodes; and means for inserting an output of the modulated beacon laser into the optical telescope for transmission to another network node, and for transporting the incoming beacon optical beam to the beacon detector.
Abstract:
The disclosure provides a practical system and methods for implementing an adaptive free-space optical network with a high-connectivity, dynamic mesh topology. The network can have operational characteristics similar to those of RF mobile ad-hock networks. Each node has one or more optical terminals that may utilize space-time division multiplexing, which entails rapid spatial hopping of optical beams to provide a high dynamic node degree without incurring high cost or high size, weight, and power requirements. As a consequence the network rapidly sequences through a series of topologies, during each of which connected nodes communicate. Each optical terminal may include a plurality of dedicated acquisition and tracking apertures which can be used to increase the speed at which traffic links can be switched between nodes and change the network topology. An RF overlay network may be provided to act as a control plane and be used to provide node discovery and adaptive route planning for the optical network.