Abstract:
An example device includes memory configured to store a speech signal representative of speech and a streaming model. The streaming model includes an on-device, real-time streaming model. The device includes one or more processors implemented in circuitry coupled to the memory. The one or more processors are configured to determine one or more words in the speech signal based on one or more transfers of learned knowledge from a non-streaming model to the streaming model. The one or more processors are also configured to take an action based on the determined one or more words.
Abstract:
A method for operating a neural network includes receiving an input sequence at an encoder. The input sequence is encoded to produce a set of hidden representations. Attention-heads of the neural network calculate attention weights based on the hidden representations. A context vector is calculated for each attention-head based on the attention weights and the hidden representations. Each of the context vectors correspond to a portion of the input sequence. An inference is output based on the context vectors.
Abstract:
In one embodiment, an electronic device includes an input device configured to provide an input stream, a first processing device, and a second processing device. The first processing device is configured to use a keyword-detection model to determine if the input stream comprises a keyword, wake up the second processing device in response to determining that a segment of the input stream comprises the keyword, and modify the keyword-detection model in response to a training input received from the second processing device. The second processing device is configured to use a first neural network to determine whether the segment of the input stream comprises the keyword and provide the training input to the first processing device in response to determining that the segment of the input stream does not comprise the keyword.
Abstract:
A method, performed by an electronic device, for verifying a user to allow access to the electronic device is disclosed. In this method, sensor data may be received from a plurality of sensors including at least an image sensor and a sound sensor. Context information of the electronic device may be determined based on the sensor data and at least one verification unit may be selected from a plurality of verification units based on the context information. Based on the sensor data from at least one of the image sensor or the sound sensor, the at least one selected verification unit may calculate at least one verification value. The method may determine whether to allow the user to access the electronic device based on the at least one verification value and the context information.
Abstract:
System and method for operating an always-on ASR (automatic speech recognition) system by selecting target keywords and continuously detecting the selected target keywords in voice commands in a mobile device are provided. In the mobile device, a processor is configured to collect keyword candidates, collect usage frequency data for keywords in the keyword candidates, collect situational usage frequency data for the keywords in the keyword candidates, select target keywords from the keyword candidates based on the usage frequency data and the situational usage frequency data, and detect one or more of the target keywords in a voice command using continuous detection of the target keywords.
Abstract:
A method, performed by an electronic device, for verifying a user to allow access to the electronic device is disclosed. In this method, sensor data may be received from a plurality of sensors including at least an image sensor and a sound sensor. Context information of the electronic device may be determined based on the sensor data and at least one verification unit may be selected from a plurality of verification units based on the context information. Based on the sensor data from at least one of the image sensor or the sound sensor, the at least one selected verification unit may calculate at least one verification value. The method may determine whether to allow the user to access the electronic device based on the at least one verification value and the context information.
Abstract:
According to an aspect of the present disclosure, a method for controlling access to a plurality of electronic devices is disclosed. The method includes detecting whether a first device is in contact with a user, adjusting a security level of the first device to activate the first device when the first device is in contact with the user, detecting at least one second device within a communication range of the first device, and adjusting a security level of the at least one second device to control access to the at least one second device based on a distance between the first device and the at least one second device.
Abstract:
A method and apparatus for performing a function in a mobile device are disclosed. A media sound from a sound output device external to the mobile device is captured and a sound feature is extracted from the captured media sound. A function to be performed in the mobile device is determined by identifying at least one reference sound feature in a set of reference sound features based on the extracted sound feature, each reference sound feature in the set of reference sound features being associated with at least one of a plurality of media sounds and at least one of a plurality of functions. Further, the determined function is performed in the mobile device.
Abstract:
A method for controlling access to a plurality of applications in an electronic device includes receiving a voice command from a speaker for accessing a target application among the plurality of applications, and verifying whether the voice command is indicative of a user authorized to access the applications based on a speaker model of the authorized user. In this method, each application is associated with a security level having a threshold value. The method further includes updating the speaker model with the voice command if the voice command is verified to be indicative of the user, and adjusting at least one of the threshold values based on the updated speaker model.
Abstract:
A method includes receiving an alarm sound including information related to an emergency event. The method also includes transmitting, to a server, identification information of the mobile device and the information. The method further includes receiving, from the server, an instruction for responding to the emergency event. The method further includes outputting the instruction.