Abstract:
Methods and apparatuses for improved uplink establishment in wireless networks are presented. For example, a method of mobile communication at a user equipment is presented that may include receiving, at a user equipment (UE) and from a network entity, configuration information associated with an enhanced uplink in CELL_FACH state protocol, wherein the UE is configured to transmit uplink transmissions according to the enhanced uplink in CELL_FACH state protocol. Additionally, the example method may include determining that the configuration information includes invalid configuration information. Moreover, the example method may include performing at least one remedial action to ensure that the UE is able to transmit the uplink transmissions based on determining that the configuration information includes invalid configuration information.
Abstract:
Various aspects of the present disclosure enable a plurality of mobile devices (UEs) within a cell to spread out in time their respective transmissions of signaling messages, such as cell update messages, when the network enables or disables enhanced uplink (EUL, sometimes referred to as high-speed uplink packet access or HSUPA) while the UE is in the CELL_FACH state, by changing SIB5 or SIB5bis. In this way, the network load may be reduced, and a network blockage that otherwise might result from large numbers of UEs simultaneously transmitting the cell update message can be avoided. According to one example, a network node may be configured to distribute CELL_UPDATE messages or procedures to UEs when the network node enables or disables EUL in CELL_FACH by changing SIB5 or SIB5bis over time to reduce the network load. According to another example, a UE may be configured for utilizing a random timer or back-off timer to defer cell updates.
Abstract:
The disclosure provides for a UE handling messages in wireless communication. The disclosure provides for a UE partially exchanging a first signaling-related message associated with a first UE configuration with a network entity and triggering a state transition message that initiates a change to a second UE configuration different from the first UE configuration. In an aspect, the UE determines that the first message has not been successfully received or successfully transmitted. In an aspect, the UE sends an indication message to coordinate discarding of the first message with the network entity and receives, after sending the indication message, a second signaling-related message associated with the second UE configuration. In another aspect, the UE, after partially sending a signaling-related message, receives a reconfiguration request associated with a second UE configuration. In an aspect, the UE determines that the message has not been successfully transmitted and causes a reconfiguration failure.
Abstract:
Aspects of the disclosure provide for a method of efficiently implementing security configurations for multiple domains between a network entity and a UE in a wireless system. For instance, this disclosure provides for a network entity sending to a UE a first security mode command for a first domain, receiving a first security mode complete message in response to the first security mode command, and sending a second security mode command for a second domain. In an aspect, the second security mode command is sent in response to receiving the first security mode complete message. In an aspect, the UE does not receive a RLC acknowledgement. In another aspect, the UE saves the second security mode command until it receives the RLC acknowledgement. In an aspect, the network entity sends the second security mode command in response to receiving a message protected with first security procedure parameters.