Abstract:
One disclosed example method for view independent color equalized 3D scene texturing includes capturing a plurality of keyframes of an object; accessing a 3D representation of the object comprising a surface mesh model for the object, the surface mesh model comprising a plurality of polygons; for each polygon, assigning one of the plurality of keyframes to the polygon based on one or more image quality characteristics associated with a portion of the keyframe corresponding to the polygon; reducing a number of assigned keyframes by changing associations between assigned keyframes; and for each polygon of the surface mesh model having an assigned keyframe: equalizing a texture color of at least a portion of the polygon based at least in part on one or more image quality characteristics of the plurality of keyframes associated with the polygon; and assigning the equalized texture color to the 3D representation of the object.
Abstract:
A method of determining a reference coordinate system includes: obtaining information indicative of a direction of gravity relative to a device; and converting an orientation of a device coordinate system using the direction of gravity relative to the device to produce the reference coordinate system. The method may also include setting an origin of the reference coordinate system and/or determining a scale value of the reference coordinate system. The method may also include refining the reference coordinate system.
Abstract:
Disclosed is a method and apparatus for using color measurement features at multiple scales for a Color Transfer technique. In one embodiment, the functions implemented include: resizing a ground truth image target frame to a plurality of different scales; selecting one or more color measurement features from the ground truth image target frame at each of the plurality of different scales; making a color measurement for each color measurement feature in the ground truth image target frame; and adjusting colors of a virtual object in an augmented frame based at least in part on the color measurements.
Abstract:
Embodiments disclosed pertain to systems, method s and apparatus for the initialization of Computer Vision (CV) applications on user devices (UDs) comprising a camera and a display. In some embodiments, an optimal camera trajectory for initialization of a Computer Vision (CV) application may be determined based on an initial camera pose and an estimated pivot distance. For example, the initial camera pose may be estimated based on a first image captured by the camera. Further, the display may be updated in real-time with an indication of a desired movement direction for the camera. In some embodiments, the indication of desired movement direction may be based, in part, on a current camera pose and the optimal trajectory, where the current camera pose may be estimated based on a current image captured by the camera.
Abstract:
A method of determining a reference coordinate system includes: obtaining information indicative of a direction of gravity relative to a device; and converting an orientation of a device coordinate system using the direction of gravity relative to the device to produce the reference coordinate system. The method may also include setting an origin of the reference coordinate system and/or determining a scale value of the reference coordinate system. The method may also include refining the reference coordinate system.
Abstract:
Disclosed is a computing device that can perform automatic image rectification for a visual search. A method implemented at a computing device includes receiving one or more images from an image capture device, storing the one or more images with the computing device, building a three dimensional (3D) geometric model for one or more potential objects of interest within an environment based on at least one image of the one or more images, and automatically creating at least one rectified image having at least one potential object of interest for a visual search.