Abstract:
A computer-implemented method includes generating an empirically derived acoustic confusability measure by processing example utterances and iterating from an initial estimate of the acoustic confusability measure to improve the measure. The method can further include using the acoustic confusability measure to selectively limit phrases to make recognizable by a speech recognition application.
Abstract:
A computer-implemented method includes generating an empirically derived acoustic confusability measure by processing example utterances and iterating from an initial estimate of the acoustic confusability measure to improve the measure. The method can further include using the acoustic confusability measure to selectively limit phrases to make recognizable by a speech recognition application.
Abstract:
A method and apparatus to identify names, personalities, titles, and topics that are present in a repository and to identify names, personalities, titles, and topics that are not present in the repository, uses information from external data sources, notably the text used in non-speech, text-based searches, to expand the search terms. The expansion takes place in two forms: (1) finding plausible linguistic variants of existing search terms that are already comprehended in the repository, but that are present under slightly different names; and (2) expanding the existing search term list with items that should be there by virtue of their currency in popular culture, but which for whatever reason have not yet been reflected with content items in the repository.
Abstract:
Efficient empirical determination, computation, and use of an acoustic confusability measure comprises: (1) an empirically derived acoustic confusability measure, comprising a means for determining the acoustic confusability between any two textual phrases in a given language, where the measure of acoustic confusability is empirically derived from examples of the application of a specific speech recognition technology, where the procedure does not require access to the internal computational models of the speech recognition technology, and does not depend upon any particular internal structure or modeling technique, and where the procedure is based upon iterative improvement from an initial estimate; (2) techniques for efficient computation of empirically derived acoustic confusability measure, comprising means for efficient application of an acoustic confusability score, allowing practical application to very large-scale problems; and (3) a method for using acoustic confusability measures to make principled choices about which specific phrases to make recognizable by a speech recognition application.
Abstract:
Efficient empirical determination, computation, and use of an acoustic confusability measure comprises: (1) an empirically derived acoustic confusability measure, comprising a means for determining the acoustic confusability between any two textual phrases in a given language, where the measure of acoustic confusability is empirically derived from examples of the application of a specific speech recognition technology, where the procedure does not require access to the internal computational models of the speech recognition technology, and does not depend upon any particular internal structure or modeling technique, and where the procedure is based upon iterative improvement from an initial estimate; (2) techniques for efficient computation of empirically derived acoustic confusability measure, comprising means for efficient application of an acoustic confusability score, allowing practical application to very large-scale problems; and (3) a method for using acoustic confusability measures to make principled choices about which specific phrases to make recognizable by a speech recognition application.
Abstract:
Efficient empirical determination, computation, and use of an acoustic confusability measure comprises: (1) an empirically derived acoustic confusability measure, comprising a means for determining the acoustic confusability between any two textual phrases in a given language, where the measure of acoustic confusability is empirically derived from examples of the application of a specific speech recognition technology, where the procedure does not require access to the internal computational models of the speech recognition technology, and does not depend upon any particular internal structure or modeling technique, and where the procedure is based upon iterative improvement from an initial estimate; (2) techniques for efficient computation of empirically derived acoustic confusability measure, comprising means for efficient application of an acoustic confusability score, allowing practical application to very large-scale problems; and (3) a method for using acoustic confusability measures to make principled choices about which specific phrases to make recognizable by a speech recognition application.
Abstract:
Efficient empirical determination, computation, and use of an acoustic confusability measure comprises: (1) an empirically derived acoustic confusability measure, comprising a means for determining the acoustic confusability between any two textual phrases in a given language, where the measure of acoustic confusability is empirically derived from examples of the application of a specific speech recognition technology, where the procedure does not require access to the internal computational models of the speech recognition technology, and does not depend upon any particular internal structure or modeling technique, and where the procedure is based upon iterative improvement from an initial estimate; (2) techniques for efficient computation of empirically derived acoustic confusability measure, comprising means for efficient application of an acoustic confusability score, allowing practical application to very large-scale problems; and (3) a method for using acoustic confusability measures to make principled choices about which specific phrases to make recognizable by a speech recognition application.
Abstract:
Efficient empirical determination, computation, and use of an acoustic confusability measure comprises: (1) an empirically derived acoustic confusability measure, comprising a means for determining the acoustic confusability between any two textual phrases in a given language, where the measure of acoustic confusability is empirically derived from examples of the application of a specific speech recognition technology, where the procedure does not require access to the internal computational models of the speech recognition technology, and does not depend upon any particular internal structure or modeling technique, and where the procedure is based upon iterative improvement from an initial estimate; (2) techniques for efficient computation of empirically derived acoustic confusability measure, comprising means for efficient application of an acoustic confusability score, allowing practical application to very large-scale problems; and (3) a method for using acoustic confusability measures to make principled choices about which specific phrases to make recognizable by a speech recognition application.
Abstract:
Efficient empirical determination, computation, and use of an acoustic confusability measure comprises: (1) an empirically derived acoustic confusability measure, comprising a means for determining the acoustic confusability between any two textual phrases in a given language, where the measure of acoustic confusability is empirically derived from examples of the application of a specific speech recognition technology, where the procedure does not require access to the internal computational models of the speech recognition technology, and does not depend upon any particular internal structure or modeling technique, and where the procedure is based upon iterative improvement from an initial estimate; (2) techniques for efficient computation of empirically derived acoustic confusability measure, comprising means for efficient application of an acoustic confusability score, allowing practical application to very large-scale problems; and (3) a method for using acoustic confusability measures to make principled choices about which specific phrases to make recognizable by a speech recognition application.
Abstract:
A method and apparatus to identify names, personalities, titles, and topics that are present in a repository and to identify names, personalities, titles, and topics that are not present in the repository, uses information from external data sources, notably the text used in non-speech, text-based searches, to expand the search terms. The expansion takes place in two forms: (1) finding plausible linguistic variants of existing search terms that are already comprehended in the repository, but that are present under slightly different names; and (2) expanding the existing search term list with items that should be there by virtue of their currency in popular culture, but which for whatever reason have not yet been reflected with content items in the repository.