Abstract:
A logical module, referred as Load Balancer Module (LBM), is disclosed which listens to one of certain common predefined port number. These well-known ports for receiving communication video conference signaling and control protocols is thereafter load balanced and multi-plexed to a number of instances of protocol stack applications. By balancing the multi-media data stream across a multitude of application instances multiple multi-media data streams may be serviced and processed by a single internet protocol host processor. A mutipoint control unit (MCU) may therefore process multiple input data streams containing multi-media video conferencing information.
Abstract:
A logical module, referred as Load Balancer Module (LBM), is disclosed which listens to one of certain common predefined port number. These well-known ports for receiving communication video conference signaling and control protocols is thereafter load balanced and multi-plexed to a number of instances of protocol stack applications. By balancing the multi-media data stream across a multitude of application instances multiple multi-media data streams may be serviced and processed by a single internet protocol host processor. A multipoint control unit (MCU) may therefore process multiple input data streams containing multi-media video conferencing information.
Abstract:
A logical module, referred as Load Balancer Module (LBM), is disclosed which listens to one of certain common predefined port number. These well-known ports for receiving communication video conference signaling and control protocols is thereafter load balanced and multi-plexed to a number of instances of protocol stack applications. By balancing the multi-media data stream across a multitude of application instances multiple multi-media data streams may be serviced and processed by a single internet protocol host processor. A multipoint control unit (MCU) may therefore process multiple input data streams containing multi-media video conferencing information.
Abstract:
A logical module, referred as Load Balancer Module (LBM), is disclosed which listens to one of certain common predefined port number. These well-known ports for receiving communication video conference signaling and control protocols is thereafter load balanced and multi-plexed to a number of instances of protocol stack applications. By balancing the multi-media data stream across a multitude of application instances multiple multi-media data streams may be serviced and processed by a single internet protocol host processor. A mutipoint control unit (MCU) may therefore process multiple input data streams containing multi-media video conferencing information.
Abstract:
A logical module, referred as Load Balancer Module (LBM), is disclosed which listens to one of certain common predefined port number. These well-known ports for receiving communication video conference signaling and control protocols is thereafter load balanced and multi-plexed to a number of instances of protocol stack applications. By balancing the multi-media data stream across a multitude of application instances multiple multi-media data streams may be serviced and processed by a single internet protocol host processor. A mutipoint control unit (MCU) may therefore process multiple input data streams containing multi-media video conferencing information.
Abstract:
A logical module, referred as Load Balancer Module (LBM), is disclosed which listens to one of certain common predefined port number. These well-known ports for receiving communication video conference signaling and control protocols is thereafter load balanced and multi-plexed to a number of instances of protocol stack applications. By balancing the multi-media data stream across a multitude of application instances multiple multi-media data streams may be serviced and processed by a single internet protocol host processor. A multipoint control unit (MCU) may therefore process multiple input data streams containing multi-media video conferencing information.