Abstract:
A method is described for producing protein compositions having reduced amounts of O-linked glycosylation. The method includes producing the protein in cells cultured in the presence of an inhibitor of Pmt-mediated O-linked glycosylation and/or in the presence of one or more α-1,2-mannosidases.
Abstract:
A method is described for producing protein compositions having reduced amounts of O-linked glycosylation. The method includes producing the protein in cells cultured in the presence of an inhibitor of Pmt-mediated O-linked glycosylation and/or in the presence of one or more α-1,2-mannosidases.
Abstract:
A method is described for producing protein compositions having reduced amounts of O-linked glycosylation. The method includes producing the protein in cells cultured in the presence of an inhibitor of Pmt-mediated O-linked glycosylation and/or in the presence of one or more α-1,2-mannosidases.
Abstract:
A method is described for producing protein compositions having reduced amounts of O-linked glycosylation. The method includes producing the protein in cells cultured in the presence of an inhibitor of Pmt-mediated O-linked glycosylation and/or in the presence of one or more α-1,2-mannosidases.
Abstract:
A method is described for producing protein compositions having reduced amounts of O-linked glycosylation. The method includes producing the protein in cells cultured in the presence of an inhibitor of Pmt-mediated O-linked glycosylation and/or in the presence of one or more α-1,2-mannosidases.
Abstract:
A method is described for producing protein compositions having reduced amounts of O-linked glycosylation. The method includes producing the protein in cells cultured in the presence of an inhibitor of Pmt-mediated O-linked glycosylation and/or in the presence of one or more α-1,2-mannosidases.
Abstract:
Lower eukaryote host cells in which the function of at least one endogenous gene encoding a chaperone protein, such as a Protein Disulphide Isomerase (PDI), has been reduced or eliminated and at least one mammalian homolog of the chaperone protein is expressed are described. In particular aspects, the host cells further include a deletion or disruption of one or more O-protein mannosyltransferase genes, and/or overexpression of an endogenous or exogenous Ca2+ ATPase. These host cells are useful for producing recombinant glycoproteins in large amounts and for producing recombinant glycoproteins that have reduced O-glycosylation.
Abstract:
Lower eukaryote host cells in which the function of at least one endogenous gene encoding a chaperone protein, such as a Protein Disulphide Isomerase (PDI), has been reduced or eliminated and at least one mammalian homolog of the chaperone protein is expressed are described. In particular aspects, the host cells further include a deletion or disruption of one or more O-protein mannosyltransferase genes, and/or overexpression of an endogenous or exogenous Ca2+ATPase. These host cells are useful for producing recombinant glycoproteins in large amounts and for producing recombinant glycoproteins that have reduced O-glycosylation.
Abstract:
The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man5GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar transporters and mannosidases, to yield human-like glycoproteins.
Abstract:
Compositions comprising granulocyte-colony stimulating factor (GCSF) produced in a strain of Pichia pastoris glycoengineered to produce a GCSF wherein greater than 18% of the molecules comprise an 0-glycan with one mannose per (0-glycan is described. In particular aspects, the GCSF is PEGylated at the JV-terminus.