Abstract:
An object tracking method includes inputting, into a neural network, two or more chronologically consecutive images, and matching similarity by comparing features extracted by the neural network, namely features of each of the two or more input images, and thereby outputting, as an identification result, identification information and position information about one or more objects depicted in a chronologically later image than a chronologically earlier image, which match one or more objects which are tracking candidates depicted in the chronologically earlier image. The neural network includes two or more identical structures having zero or more fully-connected layers and one or more convolution layers, and shares parameters among corresponding layers across the identical structures.
Abstract:
Learning method includes performing a first process in which a coarse class classifier configured with a first neural network is made to classify a plurality of images given as a set of images each attached with a label indicating a detailed class into a plurality of coarse classes including a plurality of detailed classes and is then made to learn a first feature that is a feature common in each of the coarse classes, and performing a second process in which a detailed class classifier, configured with a second neural network that is the same in terms of layers other than the final layer as but different in terms of the final layer from the first neural network made to perform the learning in the first process, is made to classify the set of images into detailed classes and learn a second feature of each detailed class.
Abstract:
A determination method for determining the structure of a convolutional neural network includes acquiring N filters having the weights trained using a training image group as the initial values, where N is a natural number greater than or equal to 1, and increasing the number of the filters from N to M, where M is a natural number greater than or equal to 2 and is greater than N, by adding a filter obtained by performing a transformation used in image processing fields on at least one of the N filters.
Abstract:
Inputting an image to a neural network, performing convolution on a current frame included in the image to calculate a current feature map, which is a feature map at a present time, combining a past feature map, which is obtained by performing convolution on a past frame included in the image, and the current feature map, estimating an object candidate area using the combined past feature map and current feature map, estimating positional information and identification information regarding the one or more objects included in the current frame using the combined past feature map and current feature map and the estimated object candidate area, and outputting the positional information and the identification information regarding the one or more objects included in the current frame of the image estimated in the estimating as object detection results are included.
Abstract:
An image recognition method includes: receiving an image; acquiring processing result information including values of processing results of convolution processing at positions of a plurality of pixels that constitute the image by performing the convolution processing on the image by using different convolution filters; determining 1 feature for each of the positions of the plurality of pixels on the basis of the values of the processing results of the convolution processing at the positions of the plurality of pixels included in the processing result information and outputting the determined feature for each of the positions of the plurality of pixels; performing recognition processing on the basis of the determined feature for each of the positions of the plurality of pixels; and outputting recognition processing result information obtained by performing the recognition processing.