Abstract:
A high-frequency heating device that includes: a first conductor; a second conductor disposed with the first conductor through a space therebetween; a high-frequency power source that is connected to the first conductor and the second conductor and that applies a high-frequency voltage between the first conductor and the second conductor; and a connection path that electrically connects the first conductor and the second conductor to each other at a first connection position and a second connection position. The first connection position is different from a first power feeding position at which the first conductor and the high-frequency power source are connected to each other on the first conductor, and the second connection position is different from a second power feeding position at which the second conductor and the high-frequency power source are connected to each other on the second conductor.
Abstract:
An electromagnetic relay includes a fixed contact, a moving contact, an electromagnet device, and a second coil. The moving contact moves from a closed position where the moving contact is in contact with the fixed contact to an open position where the moving contact is out of contact with the fixed contact, and vice versa. The electromagnet device includes a first coil and a mover. The mover is actuated on receiving a magnetic flux generated when a current flows through the first coil to move the moving contact from one of the closed position or the open position to the other position. The second coil gives, when a current flows through the second coil, at least a magnetic flux, of which a direction is opposite from a direction of the magnetic flux generated by the first coil, to the mover.
Abstract:
An electromagnet device moves two moving contacts from one of a closed position or an open position to the other position when an electric current flows through a coil. A regenerative current coming from the coil flows through a regeneration unit when the coil makes a transition from an energized state where the coil is supplied with an electric current from a power supply to a non-energized state where the coil is supplied with no electric current from the power supply. The control unit causes the regenerative current to flow through a load by controlling a switch when the coil makes the transition from the energized state to the non-energized state.
Abstract:
A switching power supply apparatus includes: an DC/AC converter unit for converting a DC voltage to an AC voltage based on switching operation of switching devices; a transformer for converting the AC voltage to an AC voltage having a voltage value; a resonance circuit provided between the DC/AC converter unit and the transformer; an AC/DC converter circuit for converting an AC voltage from the transformer to a DC; an output detector unit for detecting an output voltage or an output current of the apparatus; a duty ratio controller unit for controlling a duty ratio of switching of the apparatus such that a detected output voltage or current becomes a target value; an energy detector unit for detecting an energy accumulated in the resonance circuit; and a controller unit for controlling a switching frequency such that a detected energy becomes a threshold value.
Abstract:
A power conversion device is equipped with at least one leg circuit containing two switching elements connected in series, respectively, a transformer having a primary winding and a secondary winding, a capacitor connected between the leg circuit and one end of the primary winding, a switch circuit, and a rectifier circuit. The switch circuit selectively connects one of a plurality of winding sections of the secondary winding that are different from each other to the rectifier circuit