Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a feature clustering of users, user correlation database access, and user interface generation system. The system can obtain information stored in different databases located across geographic regions, and determine unique users from the different information. The information can be included in unique records in the databases, with each record describing a particular user, and with each user described with imperfect identifying information. The system can analyze the different information utilizing machine learning models, and can associate each record with a particular unique user. The system can obtain identifications of items associated with each user, and determine the propensity of the user to disassociate with one or more items, or determine likelihoods of future association with different items not presently associated with the user.
Abstract:
Systems and methods are provided for implementing a machine learning approach to modeling entity behavior. Fixed information and periodically updated information may be utilized to predict the behavior of an entity. By incorporating periodically updated information, the system is able to maintain an up-to-date prediction of each entity's behavior, while also accounting for entity action with respect to ongoing obligations. The system may generate behavior scores for the set of entities. In some embodiments, the behavior scores that are generated may indicate the transactional risk associated with each entity. Using the behavior scores generated, a user may be able to assess the credit riskiness of individual entities and instruct one or more individuals assigned to the entities to take one or more actions based on the credit riskiness of the individual entities.
Abstract:
Systems and methods are provided for implementing a machine learning approach to modeling entity behavior. Fixed information and periodically updated information may be utilized to predict the behavior of an entity. By incorporating periodically updated information, the system is able to maintain an up-to-date prediction of each entity's behavior, while also accounting for entity action with respect to ongoing obligations. The system may generate behavior scores for the set of entities. In some embodiments, the behavior scores that are generated may indicate the transactional risk associated with each entity. Using the behavior scores generated, a user may be able to assess the credit riskiness of individual entities and instruct one or more individuals assigned to the entities to take one or more actions based on the credit riskiness of the individual entities.
Abstract:
Systems and methods are provided for enhanced machine learning refinement and alert generation. An example method includes accessing datasets storing customer information reflecting transactions of customers. Individual risk scores are generated for the customers based on the customer information. Generating the risk score includes providing identified occurrences of scenario definitions and customer information as input to one or more machine learning models, the scenario definitions identifying occurrences of specific information reflected in the datasets, with the machine learning models assign respective risk scores to the customers. An interactive user interface is presented. The interactive user presents summary information associated with the risk scores, with the interactive user interfaces enabling an investigation into whether a particular customer is exhibiting risky behavior, responds to user input indicating feedback usable to update the one or more machine learning models or scenario definitions, with the feedback triggering updating of the machine learning models.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a feature clustering of users, user correlation database access, and user interface generation system. The system can obtain information stored in different databases located across geographic regions, and determine unique users from the different information. The information can be included in unique records in the databases, with each record describing a particular user, and with each user described with imperfect identifying information. The system can analyze the different information utilizing machine learning models, and can associate each record with a particular unique user. The system can obtain identifications of items associated with each user, and determine the propensity of the user to disassociate with one or more items, or determine likelihoods of future association with different items not presently associated with the user.
Abstract:
Systems and methods are provided for implementing a machine learning approach to modeling entity behavior. Fixed information and periodically updated information may be utilized to predict the behavior of an entity. By incorporating periodically updated information, the system is able to maintain an up-to-date prediction of each entity's behavior, while also accounting for entity action with respect to ongoing obligations. The system may generate behavior scores for the set of entities. In some embodiments, the behavior scores that are generated may indicate the transactional risk associated with each entity. Using the behavior scores generated, a user may be able to assess the credit riskiness of individual entities and instruct one or more individuals assigned to the entities to take one or more actions based on the credit riskiness of the individual entities.
Abstract:
Systems and methods are provided for enhanced machine learning refinement and alert generation. An example method includes accessing datasets storing customer information reflecting transactions of customers. Individual risk scores are generated for the customers based on the customer information. Generating the risk score includes providing identified occurrences of scenario definitions and customer information as input to one or more machine learning models, the scenario definitions identifying occurrences of specific information reflected in the datasets, with the machine learning models assign respective risk scores to the customers. An interactive user interface is presented. The interactive user presents summary information associated with the risk scores, with the interactive user interfaces enabling an investigation into whether a particular customer is exhibiting risky behavior, responds to user input indicating feedback usable to update the one or more machine learning models or scenario definitions, with the feedback triggering updating of the machine learning models.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a feature clustering of users, user correlation database access, and user interface generation system. The system can obtain information stored in different databases located across geographic regions, and determine unique users from the different information. The information can be included in unique records in the databases, with each record describing a particular user, and with each user described with imperfect identifying information. The system can analyze the different information utilizing machine learning models, and can associate each record with a particular unique user. The system can obtain identifications of items associated with each user, and determine the propensity of the user to disassociate with one or more items, or determine likelihoods of future association with different items not presently associated with the user.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a feature clustering of users, user correlation database access, and user interface generation system. The system can obtain information stored in different databases located across geographic regions, and determine unique users from the different information. The information can be included in unique records in the databases, with each record describing a particular user, and with each user described with imperfect identifying information. The system can analyze the different information utilizing machine learning models, and can associate each record with a particular unique user. The system can obtain identifications of items associated with each user, and determine the propensity of the user to disassociate with one or more items, or determine likelihoods of future association with different items not presently associated with the user.