Abstract:
A fuel assembly for a boiling water reactor comprising a plurality of fuel units (3a, 3b, 3c, 3d), stacked on top of each other, each one comprising a top tie plate (5), a bottom tie plate (6) and a plurality of fuel rods (4a, 4b, 4c) arranged between the top tie plate and the bottom tie plate. The fuel units are surrounded by a fuel channel (9) with a substantially square cross section. At least some of the fuel units comprise fuel rods with different diameters and different fuel quantities. The fuel rods are adapted such that fuel quantity and lattice space are optimized laterally and axially in the fuel assembly.
Abstract:
The present invention relates to a fuel assembly with a substantially square cross section for a light-water reactor. The light-water reactor comprises a plurality of fuel rods extending between a top tie plate and a bottom tie plate. A fuel rod comprises a cladding tube which surrounds a column with fissionable material. According to one aspect of the invention, at least one fuel rod is provided with an axial gap in the fissionable material. Around this axial gap, the mass of the material is greater than the mass of the material in the main part of the cladding tube.
Abstract:
A spacer for retaining and positioning elongated elements at one or a plurality of levels in a nuclear reactor fuel assembly comprises a grid structure of joined-together sleeve cells. A coolant is adapted to flow upwards through the fuel assembly. The majority of the sleeve cells are provided with an upstream edge with a waveform. The edge is waveformed in such a way that the upwardly flowing coolant first encounters a peak of the wave which is disposed between the joints of the sleeves and thereafter a valley of the wave which is disposed at the joints of the sleeves. The peaks are arranged closer to a center of the sleeve cell than the valleys. Between the peaks and valleys, oblique edges are formed.
Abstract:
A fuel assembly for a boiling water reactor comprises a bottom tie plate, a top tie plate, and a first and a second group of vertical fuel rods, each including a column of fuel pellets surrounded by a cladding tube. The second group of fuel rods has a shorter active length than the first group of fuel rods. Both the first and the second group of fuel rods extend between the bottom tie plate and the top tie plate. The second group of fuel rods comprises a fission gas plenum surrounded by a plenum tube arranged above the cladding tube. The main part of the plenum tube has a cross-section area which is smaller than the cross-section area of the cladding tube.
Abstract:
A nuclear fuel core in a pressurized-water reactor including fuel assemblies, each of which comprise a top tie plate; a bottom tie plate, the top tie plate and the bottom tie plate having through-openings for passing coolant flowing from beneath upwards through each of the fuel assemblies; elongated elements, arranged between the top tie plate and the bottom tie plate; a mixing cross section having a mixing center, the mixing cross section extending through four orthogonally arranged fuel assemblies and having a size corresponding to at least that of two fuel assemblies; and a plurality of spacers for retaining and mutually fixing the elongated elements, the plurality of spacers having flow control members for controlling coolant flow around the mixing center. A nuclear fuel core in a boiling water reactor is also disclosed.
Abstract:
A fuel assembly in the form of an elongated channel having several corners is connected to a coolant intended to flow through the channel. A bundle of similarly elongated fuel rods, retained by a plurality of spacers, is arranged in the channel, and arranged in the upper part of the fuel assembly, at least between a pair of spacers, is a sleeve formed of a sheet around the bundle. The sleeve has an external shape which conforms closely to the walls of the fuel assembly and is perforated by a large number of openings, the total surface of which is at least as large as the sheet surface remaining on one side of the sleeve.
Abstract:
A bimetallic spacer for supporting fuel rods in position in a nuclear reactor fuel assembly substantially comprises inner and outer structural elements of a first metallic material and spring elements of a second metallic material. The structural and spring elements together define a lattice, the interstices of which receive the individual fuel rods. The structural elements and spring elements in the spacer are connected together by forming the structural elements with openings and fitting the ends of the spring elements in the openings. At one end of the opening in the structural element, two slots can be provided for forming a tongue-shaped member which is moved aside to make space for the spring element and then moves back when the end of the spring element is in position, thus preventing a possible vertical return movement of the end of the spring element.
Abstract:
The invention refers to a spacer for holding a number if elongated fuel rods intended to be located in a nuclear plant and to a fuel unit having such spacers. The spacer encloses a number of cells, which each has a longitudinal axis and is arranged to receive a fuel rod in such a way that the fuel rod extends in parallel with the longitudinal axis. Each cell is formed by a sleeve-like member. Each sleeve-like member is manufactured in a sheet-shaped material that is bent to the sleeve-like shape.
Abstract:
The invention concerns a spacer and a fuel assembly for a nuclear reactor. The spacer has a plurality of cells (10) for holding elongated elements. The cells (10) are defined by a plurality of side portions (12). At least one of said cells (10) has at least one side portion (12) from which a flow-influencing member (20) is formed in that it is folded out from the side portion (12). The side portion (12) from which the flow-influencing member (20) is folded out comprises a first (22) and a second (24) edge surface which are connected to each other and which correspond to the directions of a first (26) and a second (28) edge of said flow-influencing member (20) in a non folded out state of the flow-influencing member (20). The first edge surface (22) has an extension in at least a first direction (14) in which a cooling medium is intended to flow. The second edge surface (24) has an extension in a direction which is perpendicular to said first direction (14).
Abstract:
Spacers (10) with a cell-formed lattice-work for retaining parallel elongated elements such as fuel rods (5) into a bundle in a nuclear reactor fuel assembly are arranged in a suitable spaced relationship to each other along the bundle, and the cells are formed from tubular sleeves (1). Each one of these sleeves (1) offers a passage for one of the elements in order to fix the elements in relation to each other. Substantially half the number of sleeves (1) in a spacer (10), distributed evenly over the cross section of the bundle, are located in a first plane across the bundle and are joined to each other inside a first frame (11) surrounding the bundle, thereby forming a lattice of sleeves (1) and gaps (13). The remaining sleeves (1) of the spacer (10) are joined together inside a second frame (12) surrounding the bundle and are located in a second plane, separate from the first plane, across the bundle. These sleeves (1) also form a lattice of sleeves (1) and gaps (13), the sleeves (1) in the different planes being arranged in such a way that an element fixed by a sleeve (1) in the first plane freely traverses a gap (13) arranged in the second plane and vice versa.