Abstract:
A lens array includes a plurality of lenses arranged in at least two rows parallel with each other. The plurality of lenses are arranged in a first direction in each row. Each of the plurality of lenses allows light to pass in a second direction. An arrangement center is defined at a center position between the two rows in a third direction perpendicular to both of the first direction and the second direction. Each of the plurality of lenses includes an incident surface and an emission surface. A surface apex of the emission surface is displaced with respect to a surface apex of the incident surface in a direction away from the arrangement center in the third direction.
Abstract:
An exposure unit includes a light-emitting element array and a lens array. The light-emitting element array includes a plurality of light-emitting elements that are disposed in a first direction and each emit a light beam. The lens array faces the light-emitting element array in a second direction that is orthogonal to the first direction, and focuses the light beams emitted from the respective light-emitting elements. The following expression [3] is satisfied. A symmetric property, determined from the following expression [1], of a light amount distribution in the first direction of at least one of the light beams focused by the lens array satisfies the following expression [2]. S=|(HL−HR)/(XE/2)| [1] 0≤S≤0.65 [2] Lo≠LB [3]
Abstract:
An exposure device includes a first lens plate including first lenses arranged substantially linearly and configured to form an intermediate image being an inverted reduced image of an object, a second lens plate including second lenses arranged substantially linearly in an arrangement direction of the first lenses and configured to form an inverted enlarged image of the intermediate image on a light reception surface, and light emitting elements arranged substantially linearly at pitch PD in the arrangement direction. A shift s in an arrangement pitch between the first lenses in the arrangement direction satisfies 0
Abstract:
Provided are a lens array, a lens unit, an exposure device, an LED head, and an image forming apparatus. The lens array includes a plurality of lenses arranged so as to form an array. Each of the plurality of lenses is configured so that a contour focal length which is a focal length of a ray incident on a first position separate from an optical axis is longer than a paraxial focal length which is a focal length of a ray incident on a second position in the vicinity of the optical axis.
Abstract:
A lens unit includes a first lens array including first lenses arranged in at least two lines; a second lens array including second lenses arranged in an arrangement relationship corresponding to the first lens array, the second lenses respectively facing the first lenses, the second lens array being arranged to face the first lens array so that each pair of the first and second lenses has a common optical axis; and a first light blocking member arranged between the first lens array and the second lens array and having first openings each being arranged to face the pair of the first and second lenses in a direction of the optical axis. An interval PXL from an array center position between two adjacent lines to the optical axis and an interval PXS from the array center position to an opening center of the first opening satisfy PXL
Abstract:
A lens unit according to one or more embodiments includes a lens plate member including a plurality of lenses arranged in a first direction; and a light block member provided facing the lens plate member and including a plurality of opening portions arranged in the first direction, the opening portions being provided in one-to-one correspondence with the lenses. A first positioning portion is formed at a first position in first direction of each of the lens plate member and the light block member. The first positioning portion of the lens plate member and the first positioning portion of the light block member align with each other and continuously extend in a second direction along an optical axis direction of the lenses.
Abstract:
A lens unit includes a first lens array including a plurality of first lens elements. The first lens array satisfies D1≤0.25·P1 where P1 is a pitch in a first direction between optical axes of adjacent ones of the first lens elements, and D1 is a displacement amount that is an absolute value of a difference between a first length WE1 from a center position of the first lens array to an end position of the first lens array in the first direction at a first temperature, and a second length WE2 from the center position of the first lens array to the end position of the first lens array at a second temperature higher than the first temperature by 30° C.
Abstract:
An exposure device includes an optical system member that forms an image of light from a light emitting element array having multiple light emitting elements arranged, an optical system support part that supports the optical system member, and a restraining member that restrains the optical system member to the optical system support part. The optical system support part has sliding parts, which are able to slide relative to the restraining member, formed on a light emitting element side face and an image forming side face in positions opposing the both end parts or the vicinity of both end parts in a longitudinal direction of the optical system support part, and in the both end parts or in the vicinity of the both end parts in the longitudinal direction, the restraining member is formed between the sliding parts and the optical system member, fixed to the optical system member, and slidable in the longitudinal direction relative to the optical system support part.
Abstract:
A lens unit includes a first lens plate including first lenses arranged in a first direction and configured to form an intermediate image being an inverted reduced image of an object, a second lens plate including second lenses arranged in the first direction and configured to form an inverted enlarged image of the intermediate image on a light reception surface, and a positioning portion being in contact with both a butting portion formed on the first lens plate and a butting portion formed on the second lens plate.
Abstract:
A lens array includes a first lens row including first lenses arranged in a first direction, a second lens row including second lenses arranged in a direction substantially parallel with the first direction, a first boundary being a boundary between the first lenses adjacent to each other, a second boundary being a boundary between each of the first lenses and the second lens adjacent to the first lens, and a first join portion where the first boundary and the second boundary join each other. At the first joint portion, the first boundary and the second boundary contact each other with no step as seen in a plane that is substantially orthogonal to the first direction.