Abstract:
Provided is a developing device including: a first helical blade; a second helical blade formed at the same blade pitch as a blade pitch of the first helical blade; a developer discharge port for discharging surplus developer; and a regulating member formed in a reverse phase with respect to the first helical blade. When a proximity portion is at a position facing a communication portion, a blade apex portion of the second helical blade is arranged to fall within a range of from a position facing an end surface portion of the communication portion on a downstream side of the second conveyance path to a position immediately before a position facing the proximity portion, which is reached in accordance with a phase shift of the second helical blade. A first stirring member and a second stirring member are driven at the same rotational speed.
Abstract:
A stir-transport member is formed on a circumferential surface of a rotation shaft with a first spiral blade, and a second spiral blade formed to overlap the region of the first spiral blade and is opposite the first spiral blade in phase and having a smaller radial-direction height than the first spiral blade. Sections of the spiral blades along the cross longitudinal direction thereof have trapezoidal shapes. The first spiral blade have a plurality of first swell portions, a part of each corresponding to a bottom of the trapezoidal shape and is more swollen than the other portions. The second spiral blade have a plurality of second swell portions, a part of each corresponding to the bottom of the trapezoidal shape and is more swollen than the other portions. The first spiral blade cross the second spiral blade at least at one of the first swell portions per turn.
Abstract:
A fuel cell system, includes: 1) a fuel cell including: i) a fuel electrode to which a fuel gas is supplied, and ii) an oxidant electrode to which an oxidant gas reacting with the fuel gas for a generating operation is supplied; and 2) a fuel gas supplier supplying the fuel gas to the fuel electrode before the fuel cell system is started for the generating operation. A first predetermined pressure Pin1 of fuel gas is determined based on a product which is calculated from the following: i) an allowable volume Vcell for the fuel gas to flow in the fuel electrode, multiplied by, ii) a pressure Pcell of the fuel gas in the fuel electrode.