Dibenzoheterocyclic compound and preparation method and application thereof

    公开(公告)号:US11342517B2

    公开(公告)日:2022-05-24

    申请号:US16431761

    申请日:2019-06-05

    摘要: A dibenzoheterocyclic compound having a structure shown in a formula wherein the dibenzoheterocyclic compound has a low LUMO energy level and can be matched with an electron transport material favorable for injection and transport of electrons. The dibenzoheterocyclic compound has hole transport performance. As a light-emitting layer material, the dibenzoheterocyclic compound balances the ratio of electrons to holes in a light-emitting layer increasing the combination probability and improving the light-emitting efficiency of a device. The spatial configuration of the dibenzoheterocyclic compound avoids stacking of material molecules, avoiding generation of high energy excitons due to energy transfer among molecules, reducing annihilation of excitons, and inhibiting efficiency roll-off. The dibenzoheterocyclic compound has thermal stability, so blue light can be emitted efficiently and stably. An organic light-emitting diode contains the dibenzoheterocyclic compound, and a blue light-emitting device with high blue light-emitting efficiency and low driving voltage.

    Dibenzoheterocyclic compound and preparation method and application thereof

    公开(公告)号:US11453685B2

    公开(公告)日:2022-09-27

    申请号:US16431947

    申请日:2019-06-05

    摘要: A dibenzoheterocyclic compound wherein band gaps of HOMO and LUMO energy levels of the dibenzoheterocyclic compound are wide, light can be emitted in a deep blue light-emitting region; and the LUMO energy level of the dibenzoheterocyclic compound is low, so the LUMO energy level matches with an electron transport layer for electrons injection and transport. The dibenzoheterocyclic compound has hole transport performance, so as a light-emitting layer material, the dibenzoheterocyclic compound balances the ratio of electrons to holes in a light-emitting layer increasing the combination probability and improving the device light-emitting efficiency. The spatial configuration of the dibenzoheterocyclic compound avoids material stacking molecules, reduces annihilation of excitons, and inhibits efficiency roll-off. The dibenzoheterocyclic compound has thermal stability, so deep blue light can be emitted efficiently and stably. With an organic light-emitting diode and a deep blue light-emitting device with high light-emitting efficiency, low working voltage can be obtained.

    Fused Polycyclic Compound, and Preparation Method and Use Thereof

    公开(公告)号:US20200343456A1

    公开(公告)日:2020-10-29

    申请号:US16794286

    申请日:2020-02-19

    摘要: The present invention relates to the field of display technologies, and particularly to a fused polycyclic compound, and a preparation method and use thereof. The fused polycyclic compound provided in the present invention has a structure of General Formula IV. The structure of the compound has ambipolarity, and the HOMO level and the LUMO level of the host material are respectively located on different electron donating group and electron withdrawing group, such that the transport of charges and holes in the host material becomes more balanced, thereby expanding the area where holes and electrons are recombined in the light emitting layer, reducing the exciton concentration, preventing the triplet-triplet annihilation of the device, and improving the efficiency of the device.

    Fused Polycyclic Compound, and Preparation Method and Use Thereof

    公开(公告)号:US20200343455A1

    公开(公告)日:2020-10-29

    申请号:US16794285

    申请日:2020-02-19

    摘要: The present invention relates to the field of display technologies, and particularly to a fused polycyclic compound, a preparation method and use thereof. The fused polycyclic compound provided in the present invention has a structure of General Formula IV. The structure of the compound has ambipolarity, and the HOMO level and the LUMO level of the host material are respectively located on different electron donating group and electron withdrawing group, such that the transport of charges and holes in the host material becomes more balanced, thereby expanding the area where holes and electrons are recombined in the light emitting layer, reducing the exciton concentration, preventing the triplet-triplet annihilation of the device, and improving the efficiency of the device.