Abstract:
A method, system, and computer program product for providing VLAN capacity requirement estimation is provided. The method includes receiving at a computing system a VLAN configuration file that specifies VLAN access ports, VLAN switches and VLAN trunks in a VLAN. A target access port identifier is received at the computing system from a requestor. A target trunk and target switch corresponding to the target access port are determined at the computing system. A bandwidth contribution of the target access port to the VLAN is calculated at the computing system. The calculating is based on a least contribution algorithm that reflects an impact of provisioning the target access port with respect to trunk capacity, and is responsive to the target bandwidth requirement, the target class of service and placement of the target port in the VLAN. The bandwidth contribution is then transmitted to the requestor.
Abstract:
A method, system, and computer program product for providing VLAN capacity requirement estimation is provided. The method includes receiving at a computing system a VLAN configuration file that specifies VLAN access ports, VLAN switches and VLAN trunks in a VLAN. A target access port identifier is received at the computing system from a requestor. A target trunk and target switch corresponding to the target access port are determined at the computing system. A bandwidth contribution of the target access port to the VLAN is calculated at the computing system. The calculating is based on a least contribution algorithm that reflects an impact of provisioning the target access port with respect to trunk capacity, and is responsive to the target bandwidth requirement, the target class of service and placement of the target port in the VLAN. The bandwidth contribution is then transmitted to the requestor.
Abstract:
A method, system, and computer program product for providing VLAN capacity requirement estimation is provided. The method includes receiving at a computing system a VLAN configuration file that specifies VLAN access ports, VLAN switches and VLAN trunks in a VLAN. A target access port identifier is received at the computing system from a requestor. A target trunk and target switch corresponding to the target access port are determined at the computing system. A bandwidth contribution of the target access port to the VLAN is calculated at the computing system. The calculating is based on a least contribution algorithm that reflects an impact of provisioning the target access port with respect to trunk capacity, and is responsive to the target bandwidth requirement, the target class of service and placement of the target port in the VLAN. The bandwidth contribution is then transmitted to the requestor.
Abstract:
A method, system, and computer program product for providing VLAN capacity requirement estimation is provided. The method includes receiving at a computing system a VLAN configuration file that specifies VLAN access ports, VLAN switches and VLAN trunks in a VLAN. A target access port identifier is received at the computing system from a requestor. A target trunk and target switch corresponding to the target access port are determined at the computing system. A bandwidth contribution of the target access port to the VLAN is calculated at the computing system. The calculating is based on a least contribution algorithm that reflects an impact of provisioning the target access port with respect to trunk capacity, and is responsive to the target bandwidth requirement, the target class of service and placement of the target port in the VLAN. The bandwidth contribution is then transmitted to the requestor.
Abstract:
A method for providing Ethernet VLAN capacity requirement estimation. The method includes receiving a VLAN that contains VLAN access ports, VLAN switches and VLAN trunks. The VLAN access ports include VLAN bandwidth requirements and VLAN class of service. The VLAN trunks include VLAN capacity counters and VLAN threshold parameters. A target access port is received from a requestor, the target access port includes a target class of service and a target bandwidth requirement. A target trunk and target switch corresponding to the target access port are determined. The target trunk corresponds to one of the VLAN trunks and the target switch corresponds to one of the VLAN switches. A bandwidth contribution of the target access port to the VLAN is calculated. The calculating is responsive to the VLAN trunks, the VLAN switches, the VLAN access ports and the target access port. The bandwidth contribution is then transmitted to the requester.
Abstract:
Methods and systems are disclosed that allow for the exchange of voice mail messages between different VMSs of different service providers and/or in different networks by the transmission of such messages through a data network using a standard protocol of the data network. Methods and systems also are disclosed that validate message transactions among subscribers receiving regional messaging services over the PSTN. The subscribers are located in different geographic areas and may be provided their voice, facsimile or data messaging services by different companies. The present invention validates passing messages (data) among customers of potentially different companies located in different areas by assessing the validity of the transaction in light of a number of conditions, including applicable regulatory or business conditions.
Abstract:
A computer implemented method for facilitating creation of virtual local area networks (VLANs). The method includes: receiving a VLAN name, a class of service and two or more access ports; determining switches and trunks associated with the access ports; searching a VLAN database for the VLAN; and creating a VLAN if said searching does not result in locating the VLAN. The creating includes: selecting a starting access port from the two or more access ports; mapping a base path from the starting access port to another of the access ports, wherein the base path includes one or more of the switches and one or more of the trunks; and adding the base path to the VLAN including the starting access port and said another of the access ports.
Abstract:
Exemplary embodiments relate to managing access resources in a network. Methods include receiving a request for network service, the request including a required class of service; accessing a storage device that specifies routers and bandwidth available on the routers; selecting a router from the specified routers and a port on the selected router to perform the requested service, the selecting including verifying that the bandwidth available on the selected router and port can perform the requested service, where the bandwidth is divided into a plurality of capacity classes and the bandwidth in each class can perform the requested service if the capacity class corresponds to the required class of service; transmitting instructions to a network configuration system to initiate activation of the requested service on the selected router and port; and updating the storage device to reflect the requested service being activated on the selected router and port.
Abstract:
A packet switched communications network that includes nodes that are interconnected by links, is dimensioned to accommodate committed bandwidths for ports that are connected to packet switched communications network. Bandwidth of a given link that includes first and second ends is provided, based on a link dimensioning rule that is a function of committed bandwidths from ports that are connected to the first end of the given link and ports that are connected to the second end of the given link. The packet switched communications network provider agrees to provide communications service for a customer through the packet switched communications network at a first committed bandwidth. At least some of the links are dimensioned to accommodate the first committed bandwidth. Upon occurrence of degraded performance for the customer over the packet switched communications network, the packet switched communications network provider agrees to provide communications service for the customer at a second committed bandwidth that is greater than the first committed bandwidth. The packet switched communications network provider then dimensions at least some of the links to accommodate the second committed bandwidth.
Abstract:
A system and a method for allocating bandwidth to ports in a computer network are provided. The method includes generating a default global parameter template having a first set of control parameters that indicate a first desired allocation of bandwidth for queues associated with each port of a plurality of ports in the network. The method further includes generating a first global parameter template having a second set of control parameters that indicate a second desired allocation of bandwidth for queues associated with a first subset of the plurality of ports.