Sequentially decomposable polypeptide-based nanocarriers with protective shell and preparation thereof

    公开(公告)号:US10905653B2

    公开(公告)日:2021-02-02

    申请号:US15331460

    申请日:2016-10-21

    摘要: Provided is a sequentially decomposable polypeptide-based nanocarrier with protective shell for delivery of hydrophobic drugs and preparation thereof. The nanocarrier includes a polypeptide-based long chain copolymer and a polypeptide-based short chain copolymer both assembling into an outer layer of hydrophilic polymer and a polypeptide core, wherein the polypeptide-based long chain copolymer includes a long-chain hydrophilic polymer and a first polypeptide chain; the polypeptide-based short chain copolymer includes a short-chain hydrophilic polymer and a second polypeptide chain; the first and the second polypeptide chains each sequentially includes an acidic amino acid segment, an acid-responsive amino acid segment, and a hydrophobic amino acid segment; the long-chain hydrophilic polymer is conjugated with the first polypeptide chain via an acid-labile linkage; an end of the short-chain hydrophilic polymer is conjugated with an active targeting molecule; and the polypeptide core includes a protective shell of an acid-soluble mineral on the acidic amino acid segment.

    HIGHLY COMPRESSIBLE SHAPE MEMORY DOUBLE NETWORK HYDROGEL, USE AND PREPARATION METHOD THEREOF, AND INTERVERTEBRAL DISK SCAFFOLD

    公开(公告)号:US20230263942A1

    公开(公告)日:2023-08-24

    申请号:US17707969

    申请日:2022-03-30

    IPC分类号: A61L27/52

    CPC分类号: A61L27/52 A61L2400/16

    摘要: A highly compressible shape memory double network hydrogel includes a first network and a second network interpenetrating with each other. The first network is a chemically crosslinked cellulose by chemical crosslinking, and the chemical crosslinking is accomplished by the formation of ether groups between the cellulose. The second network is a physically crosslinked alginate by physically crosslinking, and the physical crosslinking is accomplished by reaction of the alginate with divalent metal ions. In a preparation process of the highly compressible shape memory double network hydrogel, the cellulose and the alginate are mixed first, the chemical crosslinking is then performed to obtain the first network, followed by the physical crosslinking to obtain the second network.

    Hybrid hydrogel and method of fabricating the same

    公开(公告)号:US10772844B2

    公开(公告)日:2020-09-15

    申请号:US16180016

    申请日:2018-11-05

    摘要: A hybrid hydrogel including a hydrogel material and a plurality of first hybrid nanoparticles is provided. The plurality of first hybrid nanoparticles are conjugated to the hydrogel material, wherein each of the first hybrid nanoparticles includes a first positive-charged polysaccharide and a first negative-charged polysaccharide. The first positive-charged polysaccharide is located at an inner core of the first hybrid nanoparticles. The first negative-charged polysaccharide is located at an outer shell of the first hybrid nanoparticles and carries a plurality of first growth factors. The first negative-charged polysaccharide and the first positive-charged polysaccharide are electrostatically attracted to form the first hybrid nanoparticles. A method of fabricating the hybrid hydrogel is also provided.

    HYBRID HYDROGEL AND METHOD OF FABRICATING THE SAME

    公开(公告)号:US20200093752A1

    公开(公告)日:2020-03-26

    申请号:US16180016

    申请日:2018-11-05

    摘要: A hybrid hydrogel including a hydrogel material and a plurality of first hybrid nanoparticles is provided. The plurality of first hybrid nanoparticles are conjugated to the hydrogel material, wherein each of the first hybrid nanoparticles includes a first positive-charged polysaccharide and a first negative-charged polysaccharide. The first positive-charged polysaccharide is located at an inner core of the first hybrid nanoparticles. The first negative-charged polysaccharide is located at an outer shell of the first hybrid nanoparticles and carries a plurality of first growth factors. The first negative-charged polysaccharide and the first positive-charged polysaccharide are electrostatically attracted to form the first hybrid nanoparticles. A method of fabricating the hybrid hydrogel is also provided.

    Methods of preparing stimuli-responsive multifunctional nanoparticles

    公开(公告)号:US10117837B2

    公开(公告)日:2018-11-06

    申请号:US15446387

    申请日:2017-03-01

    摘要: Provided is a method of preparing a stimuli-responsive multifunctional nanoparticle, including in sequence the steps of: (a) conjugating covalently an active targeting moiety to a hydrophilic polymer to form a targeted polymer, (b) conjugating covalently a redox-responsive moiety to the hydrophilic polymer of the targeted polymer to form a targeted redox-responsive polymer, (c) conjugating covalently a pH-responsive moiety of a drug complex to the redox-responsive moiety of the targeted redox-responsive polymer to form a targeted stimuli-responsive polymer-drug conjugate, wherein the drug complex includes a hydrophobic drug covalently linked to the pH-responsive moiety, and (d) adding the targeted stimuli-responsive polymer-drug conjugate and optionally an imaging agent into an aqueous liquid to allow self-assembly into a stimuli-responsive multifunctional nanoparticle, wherein the hydrophobic drug of the stimuli-responsive multifunctional nanoparticle forms a hydrophobic core, and the imaging agent is incorporated within the hydrophobic core.