Abstract:
Techniques are disclosed herein for generating a content item. The techniques include performing one or more first denoising operations based on an input and a first machine learning model to generate a first content item, and performing one or more second denoising operations based on the input, the first content item, and a second machine learning model to generate a second content item, where the first machine learning model is trained to denoise content items having an amount of corruption within a first corruption range, the second machine learning model is trained to denoise content items having an amount of corruption within a second corruption range, and the second corruption range is lower than the first corruption range.
Abstract:
In one embodiment of the present invention a convolution engine configures a parallel processing pipeline to perform multi-convolution operations. More specifically, the convolution engine configures the parallel processing pipeline to independently generate and process individual image tiles. In operation, for each image tile, the pipeline calculates source locations included in an input image batch. Notably, the source locations reflect the contribution of the image tile to an output tile of an output matrix—the result of the multi-convolution operation. Subsequently, the pipeline copies data from the source locations to the image tile. Similarly, the pipeline copies data from a filter stack to a filter tile. The pipeline then performs matrix multiplication operations between the image tile and the filter tile to generate data included in the corresponding output tile. To optimize both on-chip memory usage and execution time, the pipeline creates each image tile in on-chip memory as-needed.