-
公开(公告)号:US20130097108A1
公开(公告)日:2013-04-18
申请号:US13652087
申请日:2012-10-15
IPC分类号: G06F15/18
CPC分类号: G06N99/005
摘要: Disclosed are methods and structures of Multiple Kernel learning framed as a standard binary classification problem with additional constraints that ensure the positive definiteness of the learned kernel. Advantageously, the disclosed methods and structures permit the use of binary classification technologies to develop better performing, and more scalable Multiple Kernel Learning methods that are conceptually simpler.
摘要翻译: 披露的是多核内核学习的方法和结构,被认为是标准的二进制分类问题,其附加约束可以确保学习内核的正确性。 有利地,所公开的方法和结构允许使用二进制分类技术来开发更好的执行和更可扩展的多内核学习方法,其在概念上更简单。
-
公开(公告)号:US08838508B2
公开(公告)日:2014-09-16
申请号:US13652087
申请日:2012-10-15
CPC分类号: G06N99/005
摘要: Disclosed are methods and structures of Multiple Kernel learning framed as a standard binary classification problem with additional constraints that ensure the positive definiteness of the learned kernel. Advantageously, the disclosed methods and structures permit the use of binary classification technologies to develop better performing, and more scalable Multiple Kernel Learning methods that are conceptually simpler.
摘要翻译: 披露的是多核内核学习的方法和结构,被认为是标准的二进制分类问题,其附加约束可以确保学习内核的正确性。 有利地,所公开的方法和结构允许使用二进制分类技术来开发更好的性能和更可扩展的多内核学习方法,其在概念上更简单。
-