-
公开(公告)号:US11636889B2
公开(公告)日:2023-04-25
申请号:US15549108
申请日:2016-02-02
发明人: James Geza Deak , Haiping Guo , Xiaofeng Cheng , Zhimin Zhou
摘要: An automatic magnetic flow recording device, comprises a multitude of coaxially disposed hard magnetic rotating wheels wherein the hard magnetic rotating wheels are circular, and rotate with respect to each other by a predetermined transmission ratio. Each hard magnetic rotating wheel has at least one corresponding biaxial magnetoresistive angle sensor. The biaxial magnetoresistive angle sensors measure the angular positions of the hard magnetic rotating wheels within the range of 0-360 degrees. The biaxial magnetoresistive angle sensors comprise two single-axis linear magnetoresistive sensors, wherein the single-axis linear magnetoresistive sensors are an X-axis magnetoresistive sensor or a Z-axis magnetoresistive sensor. The X-axis magnetoresistive sensor of the hard magnetic rotating wheel measures a magnetic field component parallel to the tangent of the circumference of the hard magnetic rotating wheel. The Z-axis magnetoresistive sensor of the hard magnetic rotating wheel measures a magnetic field component along the radial direction of the hard magnetic rotating wheel. This flow meter recording device has several advantages compared to electronic flow meters with X, Y biaxial angle sensor. These include flexibility of the mounting position, small adjacent hard magnetic rotating wheel interference, and low power consumption.
-
公开(公告)号:US11536779B2
公开(公告)日:2022-12-27
申请号:US15315329
申请日:2015-05-14
发明人: James Geza Deak , Zhimin Zhou
IPC分类号: G01R33/022 , G01R33/09 , G01R33/00
摘要: A magnetoresistive Z-axis gradient sensor chip, which is used to detect the gradient in the XY plane of a Z-axis magnetic field component generated by a magnetic medium; the sensor chip comprises a Si substrate, a collection of two or two groups of flux guide devices separated a distance Lg and an arrangement of electrically interconnected magnetoresistive sensor units. The magnetoresistive sensor units are located on the Si substrate and located above or below the edge of the flux guide devices as well; the flux guide devices convert the component of the Z-axis magnetic field into the direction parallel to the surface of the Si substrate along the sensing axis direction of the magnetoresistive sensing units. The magnetoresistive sensor units are electrically interconnected into a half bridge or a full bridge gradiometer arrangement, wherein the opposite bridge arms are separated by distance Lg. This sensor chip can be utilized with a PCB or in combination with a PCB plus back-bias magnet with casing. The sensor measures the Z-axis magnetic field gradient by using magnetoresistive sensors with in-plane sensing axes. This sensor chip has several advantages relative to a Hall Effect sensor device, including smaller size, lower power consumption, and higher magnetic field sensitivity.
-
公开(公告)号:US11287491B2
公开(公告)日:2022-03-29
申请号:US16500912
申请日:2018-04-04
发明人: James Geza Deak , Zhimin Zhou
IPC分类号: G01R33/09
摘要: A modulated magnetoresistive sensor consists of a substrate located on a substrate in an XY plane, magnetoresistive sensing elements, a modulator, electrical connectors, an electrical insulating layer, and bonding pads. The sensing direction of the magnetoresistive sensing elements is parallel to the X axis. The magnetoresistive sensing elements are connected in series into a magnetoresistive sensing element string. The modulator is comprised of multiple elongated modulating assemblies. The elongated modulating assemblies consist of three layers—FM1 layer, NM layer, and FM2 layer. The ends of the elongated modulating assemblies are electrically connected to form a serpentine current path. The electrical insulating layer is set between the elongated modulating assemblies and the magnetoresistive sensing elements to separate the elongated modulating assemblies from the magnetoresistive sensing elements. The current modulates the permeability of the elongated modulating assemblies, and it is regulated in order to keep the modulated signal in the linear range of the magnetoresistive sensors. This technique suppresses sensor noise.
-
公开(公告)号:US20220011385A1
公开(公告)日:2022-01-13
申请号:US17309266
申请日:2019-11-13
发明人: James Geza Deak , Xuanzuo LIU
摘要: A magnetoresistive hydrogen sensor and sensing method thereof, wherein the hydrogen sensor comprises a substrate located in an X-Y plane, magnetoresistive sensing units and magnetoresistive reference units located on the substrate. The magnetoresistive sensing units are electrically connected to form a sensing arm, and the magnetoresistive reference units are electrically connected to form a reference arm. The sensing arm and the reference arm are electrically interconnected to form a referenced bridge structure. The magnetoresistive sensing units and the magnetoresistive reference units may be AMR units having the same magnetic multilayer thin film structure, GMR spin valves, or GMR multilayer film stacks having the same magnetic multilayer thin film structure. The magnetoresistive sensing units and the magnetoresistive reference units are respectively covered with a Pd layer, and a passivating insulation layer is deposited over the Pd layer of the magnetoresistive reference units. The magnetic multilayer thin film structure is made into a serpentine strip circuit by a semiconductor micromachining process. The hydrogen detecting method comprises placing the hydrogen sensor in a gas environment containing hydrogen, the Pd layers covering in the magnetoresistive sensing units absorb hydrogen to change the perpendicular magnetic anisotropy of ferromagnetic layers in the magnetic multilayer thin film structures of the magnetoresistance sensing units, which makes the magnetic moment of the ferromagnetic layer rotate to produce a change in the magnetoresistance value that correlates to the hydrogen concentration. The resulting change of the magnetoresistance value changes the output voltage value of the referenced bridge structure, and this change of the output voltage value of the referenced bridge structure is used to measure the hydrogen concentration.
-
公开(公告)号:US11169225B2
公开(公告)日:2021-11-09
申请号:US15773368
申请日:2016-10-31
发明人: James Geza Deak , Zhimin Zhou
摘要: A magnetic field sensor comprises a substrate and two comb-shaped soft ferromagnetic flux concentrators with an interdigitated structure formed on the substrate. The concentrators comprise N and N−1 rectangular comb teeth and corresponding comb seats wherein N is an integer greater than 1. Gaps are formed between the comb teeth of one concentrator and the comb seat of the other concentrator in an X direction. Adjacent comb teeth in a +Y direction form 2m−1 odd space gaps and 2m even space gaps. Here, m is an integer greater than zero and less than N. Push and pull magnetoresistive sensing element strings are located respectively in the odd space gaps and the even space gaps, and are electrically interconnected into a push-pull bridge. The magnetization alignment directions of the ferromagnetic pinned layer of the magnetic sensing element strings are Y direction.
-
公开(公告)号:US11035716B2
公开(公告)日:2021-06-15
申请号:US14763431
申请日:2014-01-24
发明人: James Geza Deak , Songsheng Xue
摘要: A digital liquid-level sensor comprises a non-magnetic conduit, a floater provided outside the non-magnetic conduit and capable of axially moving along the non-magnetic conduit, and a permanent magnet fixed on the floater. The non-magnetic conduit further comprises a switch unit and an encoding unit. The switch unit comprises at least one tunneling magnetoresistance switch which is turned on or turned off under the effect of the magnetic field produced by the permanent magnet; and the encoding unit comprises at least one encoder, of which an input end receives an on/off signal from the tunneling magnetoresistance switch and outputs a digital signal indicating the position of the floater. The digital liquid-level sensor is of a small size; has low cost, low power consumption, high reliability, high sensitivity, high solution, long service life, and a good anti-interference capability; and can directly output the digital signal.
-
公开(公告)号:US20190120915A1
公开(公告)日:2019-04-25
申请号:US16093064
申请日:2017-04-10
发明人: James Geza Deak , Xiaojun Zhang
摘要: A magnetoresistive sensor with encapsulated initialization coil comprises a packaging structure, at least one pair of sensor chips, a spiral initialization coil, a set of wire bonding pads, an ASIC specific integrated circuit and an encapsulation layer. The spiral initialization coil is located on a PCB substrate of the encapsulation structure. Each set of sensor chips comprises two sensor chips, wherein each of the sensor chips comprises two groups of magnetoresistive sensing unit strings. The magnetoresistive sensing unit strings located on the sensor chip are connected to form a magnetoresistive sensor bridge. The application specific integrated circuit, ASIC and the magnetoresistive sensor bridge are electrically interconnected. The sensor chips are located above the spiral initialization coil placed circumferentially along the surface of the spiral initialization coil. The wire bonding pad and the ASIC are electrically interconnected. This sensor design reduces the sensor hysteresis and offset generated by magnetic domains in flux concentrators. It is easy to manufacture at low cost.
-
8.
公开(公告)号:US10066940B2
公开(公告)日:2018-09-04
申请号:US15514952
申请日:2015-09-25
发明人: James Geza Deak , Zhimin Zhou
摘要: Provided are a single-chip differential free layer push-pull magnetic field sensor bridge and preparation method, the magnetic field sensor bridge comprising: a substrate, a staggered soft magnetic flux concentrator array, and a GMR spin valve or a TMR magnetoresistance sensing unit array having a magnetic sensing axis in an X-direction on the substrate. A soft magnetic flux concentrator comprises sides parallel to an X-axis and a Y-axis, and four corners sequentially labeled as A, B, C and D clockwise from an upper left position. Magnetoresistive sensing units are located at gaps between the soft magnetic flux concentrators. Additionally, the magnetoresistive sensing units corresponding to the A and C corner positions and B and D corner positions of the soft flux concentrators are defined as push magnetoresistive sensing units and pull magnetoresistive sensing units, respectively. The push magnetoresistive sensing units are electrically interconnected into one or more push arms, and the pull magnetoresistive sensing units are electrically interconnected into one or more pull arms. The push arms and the pull arms are electrically interconnected to form a push-pull sensor bridge. The present invention has low power consumption, high magnetic field sensitivity, and can measure a magnetic field in the Y-direction.
-
公开(公告)号:US20180149715A1
公开(公告)日:2018-05-31
申请号:US15578508
申请日:2016-06-01
发明人: James Geza Deak , Zhimin Zhou
CPC分类号: G01R33/093 , G01R33/0005 , G01R33/0011 , G01R33/09
摘要: A push-pull X-axis magnetoresistive sensor, comprising: a substrate upon which an interlocked array of soft ferromagnetic flux concentrators and a push-pull magnetoresistive sensor bridge unit are placed. It further may comprise calibration coils and/or initialization coils. At least one of each of the soft ferromagnetic flux concentrators is present such that an interlocking structure may be formed such that there are alternately interlocked and non-interlocked gaps along the X direction. Push/pull magnetoresistive sensing unit strings are respectively located in the interlocked and non-interlocked gaps and are electrically connected to form a push-pull magnetoresistive bridge sensing unit. This magnetoresistive sensing unit is sensitive to magnetic field along the X direction. The calibration coils and initialization coils are respectively compromised of straight calibration conductors and straight initialization conductors that run parallel and perpendicular to the push-pull magnetoresistive sensing unit strings. The structure of this push-pull X-axis magnetoresistive sensor is simple to implement. It has the advantages of high magnetic field sensitivity comparing to a referenced bridge X-axis magnetoresistive sensor as well as low power consumption.
-
10.
公开(公告)号:US20180081000A1
公开(公告)日:2018-03-22
申请号:US15542324
申请日:2016-01-05
发明人: James Geza Deak , Zhimin Zhou
CPC分类号: G01R33/0017 , G01R33/0005 , G01R33/0011 , G01R33/0206 , G01R33/09 , G01R33/093 , G01R33/098
摘要: A single chip Z-axis linear magnetoresistive sensor with a calibration/initialization coil comprises a single chip Z-axis linear magnetoresistive sensor, and a calibration coil and/or an initialization coil. The calibration coil and the initialization coil are planar coils or three-dimensional coils. The planar coils are located above a substrate and below a magnetoresistive sensing unit, between a magnetoresistive sensing unit and a soft ferromagnetic flux concentrator, above a soft ferromagnetic flux concentrator, or in a gap of the soft ferromagnetic flux concentrator. The three-dimensional coil is wound around the soft ferromagnetic flux concentrator and the magnetoresistive sensing unit. The calibration coil and the initialization coil respectively comprise straight wires which are parallel to a magnetization direction of a pinned layer/free layer, wherein the calibration coil generates an equivalent calibration magnetic field parallel/anti-parallel to the direction of the pinned layer of a push or a pull magnetoresistive unit string, and the initialization coil generates a uniform initializing magnetic field in the direction of the free layer at all magnetoresistive sensing units. By controlling the current in the calibration coil/initialization coil, calibration and magnetic state initialization of the single chip Z-axis linear magnetoresistive sensor can be achieved. The sensor has advantages of being highly efficient, quick, and convenient.
-
-
-
-
-
-
-
-
-