Abstract:
A non-invasive method of determining the concentration of an analyte uses Raman or fluorescence spectral information. A high-intensity band of light is applied to one side of skin tissue. The high-intensity light enters the skin tissue and generates a Raman or fluorescence signal. A Raman-generating material or fluorescence-generating material is placed in a location nearest the other side of skin tissue. The Raman-generating or fluorescence-generating material is located generally opposite of the entry of the applied high-intensity light. The Raman or fluorescence signal is collected and the analyte concentration is determined using the collected Raman signal.
Abstract:
A non-invasive method of determining the concentration of an analyte uses Raman spectral information. A high-intensity, narrow band of light (10) is applied to one side (12a) of skin tissue (12). The high-intensity light (10) enters the skin tissue and generates a Raman signal (16). A reflective material (22) is placed in a location nearest the other side (12b) of skin tissue (12). The reflective material (22) is located generally opposite of the entry (A) of the applied high-intensity light (10). The high-intensity light (10) and the Raman signal (20) that pass through the skin tissue (12) are reflected back into the skin tissue (12) via the reflective material (22). The Raman signal (16,20) is collected and the analyte concentration is determined using the collected Raman signal (16,20).
Abstract:
A non-invasive method of determining the concentration of an analyte uses Raman spectral information. A high-intensity, narrow band of light (10) is applied to one side (12a) of skin tissue (12). The high-intensity light (10) enters the skin tissue and generates a Raman signal (16). A reflective material (22) is placed in a location nearest the other side (12b) of skin tissue (12). The reflective material (22) is located generally opposite of the entry (A) of the applied high-intensity light (10). The high-intensity light (10) and the Raman signal (20) that pass through the skin tissue (12) are reflected back into the skin tissue (12) via the reflective material (22). The Raman signal (16,20) is collected and the analyte concentration is determined using the collected Raman signal (16,20).
Abstract:
A spectral image is corrected for optical aberrations. Tissue is exposed to a high-intensity, narrow band of light. The narrow band of light is scattered by at least one analyte in the tissue. Raman signals are optically collected from the scattered light. The Raman signals are directed to a wavelength-separating device. The Raman signals are detected as a function of intensity and wavelength to create the spectral image. The spectral image is corrected for optical aberrations using a software algorithm to spatially reassign intensity. The software may be adapted to use a reference image to make dynamic corrections. Fluorescence signals may also be collected.
Abstract:
A spectral image is corrected for optical aberrations. Tissue is exposed to a high-intensity, narrow band of light. The narrow band of light is scattered by at least one analyte in the tissue. Raman signals are optically collected from the scattered light. The Raman signals are directed to a wavelength-separating device. The Raman signals are detected as a function of intensity and wavelength to create the spectral image. The spectral image is corrected for optical aberrations using a software algorithm to spatially reassign intensity. The software may be adapted to use a reference image to make dynamic corrections. Fluorescence signals may also be collected.
Abstract:
A spectral image is corrected for optical aberrations. Tissue is exposed to a high-intensity, narrow band of light. The narrow band of light is scattered by at least one analyte in the tissue. Raman signals are optically collected from the scattered light. The Raman signals are directed to a wavelength-separating device. The Raman signals are detected as a function of intensity and wavelength to create the spectral image. The spectral image is corrected for optical aberrations using a software algorithm to spatially reassign intensity. The software may be adapted to use a reference image to make dynamic corrections. Fluorescence signals may also be collected.
Abstract:
A non-invasive method of determining the concentration of an analyte uses Raman or fluorescence spectral information. A high-intensity band of light is applied to one side of skin tissue. The high-intensity light enters the skin tissue and generates a Raman or fluorescence signal. A Raman-generating material or fluorescence-generating material is placed in a location nearest the other side of skin tissue. The Raman-generating or fluorescence-generating material is located generally opposite of the entry of the applied high-intensity light. The Raman or fluorescence signal is collected and the analyte concentration is determined using the collected Raman signal.
Abstract:
A non-invasive method of determining the concentration of an analyte uses Raman or fluorescence spectral information. A high-intensity band of light is applied to one side of skin tissue. The high-intensity light enters the skin tissue and generates a Raman or fluorescence signal. A Raman-generating material or fluorescence-generating material is placed in a location nearest the other side of skin tissue. The Raman-generating or fluorescence-generating material is located generally opposite of the entry of the applied high-intensity light. The Raman or fluorescence signal is collected and the analyte concentration is determined using the collected Raman signal.
Abstract:
Embodiments provide analyte sensors, such as implantable analyte sensors, and methods of producing the same. An implantable sensor may include a base with a plurality of chambers. One or more sensor reagents may be retained within the chambers to form analysis regions. A membrane may be coupled to the chambers over the sensor reagents. The implantable sensor may be implanted into the dermis of a subject. One or more of the sensor reagents may exhibit a color change in response to the presence of a target analyte or reaction product thereof. The wavelengths of light reflected from the analysis regions may be detected and analyzed to determine a target analyte concentration. One or more portions of the sensor or components thereof may be configured to facilitate calibration of the sensor, correction of an optical signal obtained from the sensor by a reader device to accommodate variations in the surrounding tissues, and/or calculation of a representative value by a reader device.
Abstract:
A system for determining the concentration of an analyte in at least one body fluid in body tissue comprises an infrared light source, a body tissue interface, a detector, and a central processing unit. The body tissue interface is adapted to contact body tissue and to deliver light from the infrared light source to the contacted body tissue. The detector is adapted to receive spectral information corresponding to infrared light transmitted through the portion of body tissue being analyzed and to convert the received spectral information into an electrical signal indicative of the received spectral information. The central processing unit is adapted to compare the electrical signal to an algorithm built upon correlation with the analyte in body fluid, the algorithm adapted to convert the received spectral information into the concentration of the analyte in at least one body fluid.