-
公开(公告)号:US20160071284A1
公开(公告)日:2016-03-10
申请号:US14536660
申请日:2014-11-09
发明人: Peter Kontschieder , Jonas Dorn , Darko Zikic , Antonio Criminisi
IPC分类号: G06T7/20
CPC分类号: G06K9/00744 , G06F17/30784 , G06F17/30887 , G06F19/00 , G06F19/3481 , G06K9/00342 , G06K9/6267 , G06K9/6278 , G06K2009/00738 , G06N5/00 , G06N5/025 , G06N99/005 , G06T7/0012 , G06T7/20 , G06T2207/10016 , G06T2207/20081 , G16H50/20
摘要: Video processing for motor task analysis is described. In various examples, a video of at least part of a person or animal carrying out a motor task, such as placing the forefinger on the nose, is input to a trained machine learning system to classify the motor task into one of a plurality of classes. In an example, motion descriptors such as optical flow are computed from pairs of frames of the video and the motion descriptors are input to the machine learning system. For example, during training the machine learning system identifies time-dependent and/or location-dependent acceleration or velocity features which discriminate between the classes of the motor task. In examples, the trained machine learning system computes, from the motion descriptors, the location dependent acceleration or velocity features which it has learned as being good discriminators. In various examples, a feature is computed using sub-volumes of the video.
摘要翻译: 描述了电机任务分析的视频处理。 在各种示例中,执行运动任务的人或动物的至少一部分的视频,例如将食指放在鼻子上,被输入到经过训练的机器学习系统中,以将运动任务分类为多个等级之一 。 在一个示例中,诸如光流的运动描述符是根据视频的帧对计算的,运动描述符被输入到机器学习系统。 例如,在训练期间,机器学习系统识别区分马达任务类别的时间依赖和/或位置相关的加速度或速度特征。 在实例中,经过训练的机器学习系统从运动描述符计算其已被认为是良好鉴别器的位置相关加速度或速度特征。 在各种示例中,使用视频的子卷计算特征。