Abstract:
The network system is provided. The network system includes: a first processing apparatus configured to provide a specific service; a second processing apparatus configured to provide the specific service, the first processing apparatus and the second processing apparatus having one identical address; a client apparatus configured to utilize the specific service; and a network relay apparatus connected directly or indirectly via interfaces to the first processing apparatus, the second processing apparatus, and the client apparatus and configured to relay packet transmission between the client apparatus and the first processing apparatus or the second processing apparatus, wherein the network relay apparatus forwards a received packet, which is received via the interface connecting with the client apparatus to be sent to the address as a destination, to one processing apparatus in a state enabled to provide the specific service between the first processing apparatus and the second processing apparatus.
Abstract:
A phospholipid derivative represented by the following formula (1) wherein each symbol is as described in the specification; a liposome containing the phospholipid derivative, and the like.
Abstract:
A network relay device relays data in a layer 2 network. The network relay device includes first and second communication ports, a snooping module, a transfer information storage unit, a multicast sending module, a failure detector and a port adding module. The snooping module generates snooping information. The snooping information correlates the first communication port set to a multicast transfer port to a destination MAC address. The multicast sending module refers to the snooping information stored in the transfer information storage unit and sends a multicast frame received from the layer 2 network, from the correlated multicast transfer port. The failure detector detects a communication failure in the layer 2 network. The port adding module additionally, in response to detection of the communication failure by the failure detector, set the second communication port, in addition to the first communication port, to the multicast transfer port.
Abstract:
A Provider Edge PE3 replicates a received packet and relays these to virtual circuits VC1, VC2 respectively, and Provider Edges PE2, PE2 respectively receive the packets from the virtual circuits VC1, VC2, whereupon the Provider Edges PE2, PE2, on the basis of an agreement between them, decide to handle the received packets such that one of the first edges relays the packet to a Customer Edge CE1 for forwarding to a Host A, while the other edge discards the packet without relaying it to the Customer Edge CE1.
Abstract:
An extranet direct route allowing extranet forwarding to a directly linked device is written in a layer 2-layer 3-integrated forwarding table. The procedure of introducing a layer 3 address-to-layer 2 address correspondence relation table entry into the layer 2-layer 3-integrated forwarding table searches the layer 2-layer 3-integrated forwarding table with a layer 3 address of the correspondence relation table entry and a layer 3 interface as search keys to retrieve any forwarding entry relating to an extranet direct route as a forwarding destination. The procedure subsequently extracts a VRF of each retrieved forwarding entry and introduces the correspondence relation table entry for the extracted VRF into the layer 2-layer 3-integrated forwarding table.
Abstract:
A Provider Edge PE3 replicates a received packet and relays these to virtual circuits VC1, VC2 respectively, and Provider Edges PE2, PE2 respectively receive the packets from the virtual circuits VC1, VC2, whereupon the Provider Edges PE2, PE2, on the basis of an agreement between them, decide to handle the received packets such that one of the edges relays the packet to a Customer Edge CE1 for forwarding to a Host A, while the other edge discards the packet without relaying it to the Customer Edge CE1.
Abstract:
A Provider Edge PE3 replicates a received packet and relays these to virtual circuits VC1, VC2 respectively, and Provider Edges PE2, PE2 respectively receive the packets from the virtual circuits VC1, VC2, whereupon the Provider Edges PE2, PE2, on the basis of an agreement between them, decide to handle the received packets such that one of the first edges relays the packet to a Customer Edge CE1 for forwarding to a Host A, while the other edge discards the packet without relaying it to the Customer Edge CE1.
Abstract:
When a network apparatus of this invention receives an IEEE 802.3ad link application control packet from a subscriber line with a VPWS function, it processes the packet in a control unit without relaying the packet by VPWS. More specifically, the network apparatus receives an IEEE802.3ad link aggregation control packet along with receiving an IEEE802.3x flow control packet. The network apparatus transmits a link aggregation control packet. The network apparatus also relays other layer 2 control protocol packets without receiving them, and does not transmit the other layer 2 control protocol packets.
Abstract:
When a network apparatus of this invention receives an IEEE 802.3ad link application control packet from a subscriber line with a VPWS function, it processes the packet in a control unit without relaying the packet by VPWS. More specifically, the network apparatus receives an IEEE802.3ad link aggregation control packet along with receiving an IEEE802.3x flow control packet. The network apparatus transmits a link aggregation control packet. The network apparatus also relays other layer 2 control protocol packets without receiving them, and does not transmit the other layer 2 control protocol packets.
Abstract:
When the provider edge PE1 detects the occurrence of a failure at the access line AL1, it sends the label withdraw message to the virtual circuit VC1, and when the provider edge PE2 receives the label withdraw message sent via the virtual circuit VC1, the access line AL2 is put to a link down state, and when the customer edge CE2 detects the link down state of the access line AL2, it switches from the normal path to the redundant path.