Abstract:
In a virtual network apparatus, even when a fault occurs on a private line connecting plural physical network apparatuses to communicate a control signal, the redundancy is maintained, and the lower forwarding capability is prevented. In this network system, a control signal for virtualization to be transmitted and received between plural physical network apparatuses is relayed via a unit spanning LA connecting each physical network apparatus and an adjacent network apparatus in the adjacent network apparatus. Thereby, even when a fault occurs in the private line, it is possible to continue to communicate the control signal between the physical network apparatuses and continuously operate the virtual network apparatus.
Abstract:
The network system is provided. The network system includes: a first processing apparatus configured to provide a specific service; a second processing apparatus configured to provide the specific service, the first processing apparatus and the second processing apparatus having one identical address; a client apparatus configured to utilize the specific service; and a network relay apparatus connected directly or indirectly via interfaces to the first processing apparatus, the second processing apparatus, and the client apparatus and configured to relay packet transmission between the client apparatus and the first processing apparatus or the second processing apparatus, wherein the network relay apparatus forwards a received packet, which is received via the interface connecting with the client apparatus to be sent to the address as a destination, to one processing apparatus in a state enabled to provide the specific service between the first processing apparatus and the second processing apparatus.
Abstract:
A Provider Edge PE3 replicates a received packet and relays these to virtual circuits VC1, VC2 respectively, and Provider Edges PE2, PE2 respectively receive the packets from the virtual circuits VC1, VC2, whereupon the Provider Edges PE2, PE2, on the basis of an agreement between them, decide to handle the received packets such that one of the first edges relays the packet to a Customer Edge CE1 for forwarding to a Host A, while the other edge discards the packet without relaying it to the Customer Edge CE1.
Abstract:
A network system includes: a first network; an authentication server; a second network; a network; and a packet forwarding apparatus, wherein the packet forwarding apparatus includes: a forwarding route table storage storing a first forwarding route table containing packet routing information to the second network, and a second forwarding route table containing packet routing information to the second network and the third network; and a forwarding route table selector that, prior to determination of successful authentication for the terminal apparatus, selects the first forwarding route table as a search forwarding route table, and that upon receipt of determination of successful authentication for the terminal apparatus, selects the second forwarding route table as the search forwarding route table.
Abstract:
A Provider Edge PE3 replicates a received packet and relays these to virtual circuits VC1, VC2 respectively, and Provider Edges PE2, PE2 respectively receive the packets from the virtual circuits VC1, VC2, whereupon the Provider Edges PE2, PE2, on the basis of an agreement between them, decide to handle the received packets such that one of the first edges relays the packet to a Customer Edge CE1 for forwarding to a Host A, while the other edge discards the packet without relaying it to the Customer Edge CE1.
Abstract:
A network relay device relays data in a layer 2 network. The network relay device includes first and second communication ports, a snooping module, a transfer information storage unit, a multicast sending module, a failure detector and a port adding module. The snooping module generates snooping information. The snooping information correlates the first communication port set to a multicast transfer port to a destination MAC address. The multicast sending module refers to the snooping information stored in the transfer information storage unit and sends a multicast frame received from the layer 2 network, from the correlated multicast transfer port. The failure detector detects a communication failure in the layer 2 network. The port adding module additionally, in response to detection of the communication failure by the failure detector, set the second communication port, in addition to the first communication port, to the multicast transfer port.